

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/798682/publications.pdf Version: 2024-02-01

\A/FLLL

#	Article	IF	CITATIONS
1	Shisa7 phosphorylation regulates GABAergic transmission and neurodevelopmental behaviors. Neuropsychopharmacology, 2022, 47, 2160-2170.	5.4	5
2	Regulation of GABAARs by Transmembrane Accessory Proteins. Trends in Neurosciences, 2021, 44, 152-165.	8.6	35
3	Activity- and sleep-dependent regulation of tonic inhibition by Shisa7. Cell Reports, 2021, 34, 108899.	6.4	19
4	Neuronal accumulation of peroxidated lipids promotes demyelination and neurodegeneration through the activation of the microglial NLRP3 inflammasome. Nature Aging, 2021, 1, 1024-1037.	11.6	7
5	Distinct regulation of tonic GABAergic inhibition by NMDA receptor subtypes. Cell Reports, 2021, 37, 109960.	6.4	12
6	An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Cell Reports, 2020, 32, 108104.	6.4	37
7	The post-synaptic scaffolding protein tamalin regulates ligand-mediated trafficking of metabotropic glutamate receptors. Journal of Biological Chemistry, 2020, 295, 8575-8588.	3.4	15
8	A Cluster of Autism-Associated Variants on X-Linked NLGN4X Functionally Resemble NLGN4Y. Neuron, 2020, 106, 759-768.e7.	8.1	45
9	Looking for Novelty in an "Old―Receptor: Recent Advances Toward Our Understanding of GABAARs and Their Implications in Receptor Pharmacology. Frontiers in Neuroscience, 2020, 14, 616298.	2.8	34
10	Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron, 2020, 106, 37-65.e5.	8.1	109
11	Shisa7 is a GABA _A receptor auxiliary subunit controlling benzodiazepine actions. Science, 2019, 366, 246-250.	12.6	65
12	A Conserved Tyrosine Residue in Slitrk3 Carboxyl-Terminus Is Critical for GABAergic Synapse Development. Frontiers in Molecular Neuroscience, 2019, 12, 213.	2.9	5
13	Genetic Deletion of GABAA Receptors Reveals Distinct Requirements of Neurotransmitter Receptors for GABAergic and Glutamatergic Synapse Development. Frontiers in Cellular Neuroscience, 2019, 13, 217.	3.7	7
14	PSD-95 binding dynamically regulates NLGN1 trafficking and function. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12035-12044.	7.1	42
15	Genetic deletion of NMDA receptors suppresses GABAergic synaptic transmission in two distinct types of central neurons. Neuroscience Letters, 2018, 668, 147-153.	2.1	13
16	Genetic inhibition of neurotransmission reveals role of glutamatergic input to dopamine neurons in high-effort behavior. Molecular Psychiatry, 2018, 23, 1213-1225.	7.9	13
17	How could N-Methyl-D-Aspartate Receptor Antagonists Lead to Excitation Instead of Inhibition?. Brain Science Advances, 2018, 4, 73-98.	0.9	14
18	Mossy Cells Control Adult Neural Stem Cell Quiescence and Maintenance through a Dynamic Balance between Direct and Indirect Pathways. Neuron, 2018, 99, 493-510.e4.	8.1	82

Wei Lu

#	Article	IF	CITATIONS
19	Role for VGLUT2 in selective vulnerability of midbrain dopamine neurons. Journal of Clinical Investigation, 2018, 128, 774-788.	8.2	72
20	GSG1L regulates the strength of AMPA receptor-mediated synaptic transmission but not AMPA receptor kinetics in hippocampal dentate granule neurons. Journal of Neurophysiology, 2017, 117, 28-35.	1.8	19
21	A Rare Variant Identified Within the GluN2B C-Terminus in a Patient with Autism Affects NMDA Receptor Surface Expression and Spine Density. Journal of Neuroscience, 2017, 37, 4093-4102.	3.6	64
22	Development of fast neurotransmitter synapses: General principle and recent progress. Brain Research Bulletin, 2017, 129, 1-2.	3.0	2
23	Molecular Dissection of Neuroligin 2 and Slitrk3 Reveals an Essential Framework for GABAergic Synapse Development. Neuron, 2017, 96, 808-826.e8.	8.1	64
24	Regulation of GABAergic synapse development by postsynaptic membrane proteins. Brain Research Bulletin, 2017, 129, 30-42.	3.0	37
25	Ferric Chelate Reductase 1 Like Protein (FRRS1L) Associates with Dynein Vesicles and Regulates Glutamatergic Synaptic Transmission. Frontiers in Molecular Neuroscience, 2017, 10, 402.	2.9	16
26	GSG1L suppresses AMPA receptor-mediated synaptic transmission and uniquely modulates AMPA receptor kinetics in hippocampal neurons. Nature Communications, 2016, 7, 10873.	12.8	79
27	An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development. Cell Reports, 2016, 14, 471-478.	6.4	55
28	Neurolastin, a Dynamin Family GTPase, Regulates Excitatory Synapses and Spine Density. Cell Reports, 2015, 12, 743-751.	6.4	18
29	Casein kinase 2 phosphorylates <scp>G</scp> lu <scp>A</scp> 1 and regulates its surface expression. European Journal of Neuroscience, 2014, 39, 1148-1158.	2.6	23
30	Trafficking of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPA) Receptor Subunit GluA2 from the Endoplasmic Reticulum Is Stimulated by a Complex Containing Ca2+/Calmodulin-activated Kinase II (CaMKII) and PICK1 Protein and by Release of Ca2+ from Internal Stores, Journal of Biological Chemistry, 2014, 289, 19218-19230.	3.4	37
31	LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature, 2013, 493, 495-500.	27.8	275
32	The Cell-Autonomous Role of Excitatory Synaptic Transmission in the Regulation of Neuronal Structure and Function. Neuron, 2013, 78, 433-439.	8.1	75
33	PKCλ is critical in AMPA receptor phosphorylation and synaptic incorporation during LTP. EMBO Journal, 2013, 32, 1365-1380.	7.8	93
34	Posttranslational regulation of AMPA receptor trafficking and function. Current Opinion in Neurobiology, 2012, 22, 470-479.	4.2	176
35	Potentiation of Synaptic AMPA Receptors Induced by the Deletion of NMDA Receptors Requires the GluA2 Subunit. Journal of Neurophysiology, 2011, 105, 923-928.	1.8	18
36	Genetic analysis of neuronal ionotropic glutamate receptor subunits. Journal of Physiology, 2011, 589, 4095-4101.	2.9	31

Wei Lu

#	Article	IF	CITATIONS
37	Synaptic targeting of AMPA receptors is regulated by a CaMKII site in the first intracellular loop of GluA1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22266-22271.	7.1	74
38	Increased Expression of α-Synuclein Reduces Neurotransmitter Release by Inhibiting Synaptic Vesicle Reclustering after Endocytosis. Neuron, 2010, 65, 66-79.	8.1	885
39	Metaplastic Regulation of Long-Term Potentiation/Long-Term Depression Threshold by Activity-Dependent Changes of NR2A/NR2B Ratio. Journal of Neuroscience, 2009, 29, 8764-8773.	3.6	95
40	Subunit Composition of Synaptic AMPA Receptors Revealed by a Single-Cell Genetic Approach. Neuron, 2009, 62, 254-268.	8.1	558
41	The Stoichiometry of AMPA Receptors and TARPs Varies by Neuronal Cell Type. Neuron, 2009, 62, 633-640.	8.1	123
42	Synaptic Metaplasticity through NMDA Receptor Lateral Diffusion. Journal of Neuroscience, 2008, 28, 3060-3070.	3.6	34
43	Synaptic Anchorage of AMPA Receptors by Cadherins through Neural Plakophilin-Related Arm Protein AMPA Receptor-Binding Protein Complexes. Journal of Neuroscience, 2007, 27, 8505-8516.	3.6	90
44	Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology, 2007, 52, 71-76.	4.1	199
45	PICK1 Interacts with ABP/GRIP to Regulate AMPA Receptor Trafficking. Neuron, 2005, 47, 407-421.	8.1	203