Cristiane B Rodella

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986811/publications.pdf

Version: 2024-02-01

567281 580821 36 687 15 25 citations h-index g-index papers 36 36 36 1222 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of O2 flow in discharge products and performance of Li-O2 batteries. Chemical Engineering Journal Advances, 2022, 10, 100271.	5.2	7
2	Dispersed single-atom Co and Pd nanoparticles forming a PdCo bimetallic catalyst for CO oxidation. Molecular Catalysis, 2022, 526, 112377.	2.0	3
3	Microwave irradiation suppresses the Jahn-Teller distortion in Spinel LiMn2O4 cathode material for lithium-ion batteries. Electrochimica Acta, 2022, 426, 140786.	5.2	14
4	<i>Operando</i> Synchrotron XRD of Bromide Mediated Li–O ₂ Battery. ACS Applied Materials & Samp; Interfaces, 2021, 13, 13123-13131.	8.0	14
5	Memory Effect on a LDH/zeolite A Composite: An XRD In Situ Study. Materials, 2021, 14, 2102.	2.9	8
6	Defect-Engineered β-MnO _{2â^Î′} Precursors Control the Structure–Property Relationships in High-Voltage Spinel LiMn _{1.5} Ni _{0.5} O _{4â^Î′} . ACS Omega, 2021, 6, 25562-25573.	3.5	16
7	In Situ Infrared Micro and Nanospectroscopy for Discharge Chemical Composition Investigation of Nonâ€Aqueous Lithium–Air Cells. Advanced Energy Materials, 2021, 11, 2101884.	19.5	13
8	Study of nickel, lanthanum and niobium-based catalysts applied in the partial oxidation of methane. Catalysis Today, 2020, 344, 15-23.	4.4	21
9	Radially ordered carbon nanotubes performance for Li-O2 batteries: Pre-treatment influence on capacity and discharge products. Catalysis Today, 2020, 348, 299-306.	4.4	10
10	<i>In situ</i> and <i>operando</i> x-ray diffraction and x-ray absorption studies of Co–TiO ₂ dry methane reforming catalysts. Journal Physics D: Applied Physics, 2020, 53, 044003.	2.8	5
11	Methane tri-reforming for synthesis gas production using Ni/CeZrO2/MgAl2O4 catalysts: Effect of Zr/Ce molar ratio. International Journal of Hydrogen Energy, 2020, 45, 8418-8432.	7.1	31
12	Niobium pentoxide nanoparticles @ multi-walled carbon nanotubes and activated carbon composite material as electrodes for electrochemical capacitors. Energy Storage Materials, 2019, 22, 311-322.	18.0	34
13	The thermoresponsive behaviour of Nasicon-like CuTi2(PO4)3. Materials Characterization, 2019, 155, 109795.	4.4	1
14	Tungsten oxide and carbide composite synthesized by hot filament chemical deposition as electrodes in aqueous-based electrochemical capacitors. Journal of Energy Storage, 2019, 26, 100905.	8.1	9
15	Design of Nickel Supported on Water-Tolerant Nb2O5 Catalysts for the Hydrotreating of Lignin Streams Obtained from Lignin-First Biorefining. IScience, 2019, 15, 467-488.	4.1	59
16	Morphological, Structural, and Chemical Properties of Thermally Stable Ni-Nb ₂ O ₅ for Catalytic Applications. Journal of Physical Chemistry C, 2019, 123, 3130-3143.	3.1	18
17	Hybrid Organic–Inorganic Anatase as a Bifunctional Catalyst for Enhanced Production of 5â€Hydroxymethylfurfural from Glucose in Water. ChemSusChem, 2018, 11, 872-880.	6.8	17
18	Influence of thermal treatment conditions on the characteristics of Cu-based metal oxides derived from hydrotalcite-like compounds and their performance in bio-ethanol dehydrogenation to acetaldehyde. Catalysis Today, 2018, 306, 111-120.	4.4	26

#	Article	IF	Citations
19	Surface composition and structural changes on titanium oxide-supported AuPd nanoparticles during CO oxidation. Catalysis Science and Technology, 2017, 7, 1679-1689.	4.1	19
20	Self-Organized Transformation from Hexagonal to Orthorhombic Bronze of Cs–Nb–W–O Mixed Oxides Prepared Hydrothermally. Crystal Growth and Design, 2017, 17, 6320-6331.	3.0	5
21	X-ray powder diffraction at the XRD1 beamline atÂLNLS. Journal of Synchrotron Radiation, 2016, 23, 1501-1506.	2.4	48
22	Alternative route for the synthesis of high surface-area Î-Al2O3/Nb2O5 catalyst from aluminum waste. Materials Chemistry and Physics, 2016, 184, 23-30.	4.0	8
23	Promotion effects of Pd on tungsten carbide catalysts: physiochemical properties and cellulose conversion performance. RSC Advances, 2016, 6, 87756-87766.	3.6	7
24	Achieving nano-gold stability through rational design. Chemical Science, 2016, 7, 6815-6823.	7.4	15
25	Physical and chemical studies of tungsten carbide catalysts: effects of Ni promotion and sulphonated carbon. RSC Advances, 2015, 5, 23874-23885.	3.6	56
26	A thermogravimetric analysis (TGA) method to determine the catalytic conversion of cellulose from carbon-supported hydrogenolysis process. Thermochimica Acta, 2015, 616, 9-13.	2.7	34
27	Upgrades to the XRD1 beamline optics and endstation at the LNLS. Journal of Physics: Conference Series, 2014, 493, 012004.	0.4	6
28	Oxidative reforming of model biogas over NiO–Y2O3–ZrO2 catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 1-12.	20.2	54
29	Textural and Structural Analyses of Industrial Raney Nickel Catalyst. Industrial & Engineering Chemistry Research, 2008, 47, 8612-8618.	3.7	15
30	Characterization and catalytic performance of rhenium oxide-based catalysts supported on borated silica-alumina. Applied Catalysis A: General, 2004, 263, 203-211.	4.3	8
31	Metathesis of methyl oleate over rhenium oxide-based catalysts supported on borated silica–alumina: catalyst recycling. Applied Catalysis A: General, 2004, 274, 213-217.	4.3	14
32	Structural characterization of the V2O5/TiO2 system obtained by the sol–gel method. Journal of Physics and Chemistry of Solids, 2003, 64, 833-839.	4.0	47
33	Caracterização textural e estrutural de V2O5/TiO2 obtidos via sol-gel: comparação entre secagem convencional e supercrÃtica. Quimica Nova, 2002, 25, 209-213.	0.3	6
34	Germanium and silicon compounds as promoters for Re2O7/SiO2-Al2O3 metathesis catalysts. Journal of Molecular Catalysis A, 2002, 190, 171-176.	4.8	7
35	V2O5/TiO2 Catalyst Xerogels: Method of Preparation and Characterization. Journal of Sol-Gel Science and Technology, 2002, 25, 75-82.	2.4	18
36	Chemical and structural characterization of V2O5/TiO2 catalysts. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2001, 19, 1158-1163.	2.1	14