Rui Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986638/publications.pdf

Version: 2024-02-01

218592 223716 2,521 63 26 46 citations h-index g-index papers 63 63 63 2283 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Final Overall Survival Analysis of Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma: A Multicenter, Randomized Phase III Trial. Journal of Clinical Oncology, 2022, 40, 2420-2425.	0.8	44
2	Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Molecular Cancer, 2021, 20, 14.	7.9	48
3	Unambiguous advanced radiologic extranodal extension determined by MRI predicts worse outcomes in nasopharyngeal carcinoma: Potential improvement for future editions of N category systems. Radiotherapy and Oncology, 2021, 157, 114-121.	0.3	32
4	Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: a multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet, The, 2021, 398, 303-313.	6.3	98
5	Epstein-Barr virus microRNA BART10-3p promotes dedifferentiation and proliferation of nasopharyngeal carcinoma by targeting ALK7. Experimental Biology and Medicine, 2021, 246, 2618-2629.	1.1	5
6	Nasopharyngeal carcinoma treated with intensity-modulated radiotherapy: clinical outcomes and patterns of failure among subsets of 8th AJCC stage IVa. European Radiology, 2020, 30, 816-822.	2.3	23
7	New parameters of the 8th edition AJCC/UICC T category in nasopharyngeal carcinoma: Cervical vertebrae invasion and parotid gland invasion. Clinical and Translational Medicine, 2020, 10, e202.	1.7	1
8	Prognostic value of MRIâ€determined cervical lymph node size in nasopharyngeal carcinoma. Cancer Medicine, 2020, 9, 7100-7106.	1.3	11
9	A New Model for Predicting Hypothyroidism After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 551255.	1.3	13
10	A Nomogram Based on Serum Biomarkers and Clinical Characteristics to Predict Survival in Patients With Non-Metastatic Nasopharyngeal Carcinoma. Frontiers in Oncology, 2020, 10, 594363.	1.3	13
11	Identification of cross-talk between m6A and 5mC regulators associated with onco-immunogenic features and prognosis across 33 cancer types. Journal of Hematology and Oncology, 2020, 13, 22.	6.9	47
12	Induction versus adjuvant chemotherapy combined with concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: A propensity score-matched analysis. Oral Oncology, 2020, 105, 104686.	0.8	14
13	The evolution of nasopharyngeal carcinoma staging. British Journal of Radiology, 2019, 92, 20190244.	1.0	73
14	Thyroid doseâ€volume thresholds for the risk of radiationâ€related hypothyroidism in nasopharyngeal carcinoma treated with intensityâ€modulated radiotherapy—A singleâ€institution study. Cancer Medicine, 2019, 8, 6887-6893.	1.3	19
15	Lymph Node Status and Outcomes for Nasopharyngeal Carcinoma According to Histological Subtypes: A SEER Population-Based Retrospective Analysis. Advances in Therapy, 2019, 36, 3123-3133.	1.3	18
16	Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. New England Journal of Medicine, 2019, 381, 1124-1135.	13.9	573
17	Plasma Epstein-Barr Virus DNA Load After Induction Chemotherapy Predicts Outcome in Locoregionally Advanced Nasopharyngeal Carcinoma. International Journal of Radiation Oncology Biology Physics, 2019, 104, 355-361.	0.4	64
18	Patterns of EBV-positive cervical lymph node involvement in head and neck cancer and implications for the management of nasopharyngeal carcinoma TO classification. Oral Oncology, 2019, 91, 7-12.	0.8	16

#	Article	IF	CITATIONS
19	Hypermethylation of <i>SHISA3</i> Promotes Nasopharyngeal Carcinoma Metastasis by Reducing SGSM1 Stability. Cancer Research, 2019, 79, 747-759.	0.4	35
20	Optimizing the cumulative cisplatin dose during radiotherapy in nasopharyngeal carcinoma: Dose-effect analysis for a large cohort. Oral Oncology, 2019, 89, 102-106.	0.8	16
21	Proposed modifications and incorporation of plasma Epsteinâ€Barr virus DNA improve the TNM staging system for Epsteinâ€Barr virusâ€related nasopharyngeal carcinoma. Cancer, 2019, 125, 79-89.	2.0	143
22	Role of sequential chemoradiotherapy in stage II and low-risk stage III–IV nasopharyngeal carcinoma in the era of intensity-modulated radiotherapy: A propensity score-matched analysis. Oral Oncology, 2018, 78, 37-45.	0.8	20
23	Surgical treatment indications and outcomes in patients with spinal metastases in the cervicothoracic junction (CTJ). Journal of Orthopaedic Surgery and Research, 2018, 13, 20.	0.9	8
24	Neutropenia during the First Cycle of Induction Chemotherapy Is Prognostic for Poor Survival in Locoregionally Advanced Nasopharyngeal Carcinoma: A Real-World Study in an Endemic Area. Cancer Research and Treatment, 2018, 50, 777-790.	1.3	8
25	Establishing and applying nomograms based on the 8th edition of the UICC/AJCC staging system to select patients with nasopharyngeal carcinoma who benefit from induction chemotherapy plus concurrent chemoradiotherapy. Oral Oncology, 2017, 69, 99-107.	0.8	48
26	Socioeconomic factors and survival in patients with nonâ€metastatic head and neck squamous cell carcinoma. Cancer Science, 2017, 108, 1253-1262.	1.7	33
27	Tumor response to neoadjuvant chemotherapy predicts longâ€ŧerm survival outcomes in patients with locoregionally advanced nasopharyngeal carcinoma: A secondary analysis of a randomized phase 3 clinical trial. Cancer, 2017, 123, 1643-1652.	2.0	48
28	Use of pretreatment serum uric acid level to predict metastasis in locally advanced nasopharyngeal carcinoma. Head and Neck, 2017, 39, 492-497.	0.9	8
29	Impact of marital status at diagnosis on survival and its change over time between 1973 and 2012 in patients with nasopharyngeal carcinoma: a propensity scoreâ€matched analysis. Cancer Medicine, 2017, 6, 3040-3051.	1.3	26
30	Delayed clinical complete response to intensity-modulated radiotherapy in nasopharyngeal carcinoma. Oral Oncology, 2017, 75, 120-126.	0.8	12
31	Clinical treatment considerations in the intensity-modulated radiotherapy era for patients with N0-category nasopharyngeal carcinoma and enlarged neck lymph nodes. Chinese Journal of Cancer, 2017, 36, 32.	4.9	9
32	Changes in Disease Failure Risk of Nasopharyngeal Carcinoma over Time: Analysis of 749 Patients with Long-Term Follow-Up. Journal of Cancer, 2017, 8, 455-459.	1.2	36
33	Significant value of 18F-FDG-PET/CT in diagnosing small cervical lymph node metastases in patients with nasopharyngeal carcinoma treated with intensity-modulated radiotherapy. Chinese Journal of Cancer, 2017, 36, 95.	4.9	25
34	Prognostic value of plasma Epstein–Barr virus DNA level during posttreatment follow-up in the patients with nasopharyngeal carcinoma having undergone intensity-modulated radiotherapy. Chinese Journal of Cancer, 2017, 36, 87.	4.9	53
35	Implication of comorbidity on the initiation of chemotherapy and survival outcomes in patients with locoregionally advanced nasopharyngeal carcinoma. Oncotarget, 2017, 8, 10594-10601.	0.8	5
36	Survival analysis of patients with advanced-stage nasopharyngeal carcinoma according to the Epstein-Barr virus status. Oncotarget, 2016, 7, 24208-24216.	0.8	43

#	Article	IF	CITATIONS
37	Should All Nasopharyngeal Carcinoma with Paranasal Sinus Invasion Be Staged as T3 in the Intensity-Modulated Radiotherapy Era? A Study of 1811 Cases. Journal of Cancer, 2016, 7, 1353-1359.	1.2	12
38	Prognostic Value of Neoadjuvant Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma with Low Pre-treatment Epstein-Barr Virus DNA: a Propensity-matched Analysis. Journal of Cancer, 2016, 7, 1465-1471.	1.2	14
39	Circulating EBV DNA, Globulin and Nodal Size Predict Distant Metastasis after Intensity-Modulated Radiotherapy in Stage II Nasopharyngeal Carcinoma. Journal of Cancer, 2016, 7, 664-670.	1.2	27
40	Prognostic Impact of Plasma Epstein-Barr Virus DNA in Patients with Nasopharyngeal Carcinoma Treated using Intensity-Modulated Radiation Therapy. Scientific Reports, 2016, 6, 22000.	1.6	58
41	Prognostic Value of the Cumulative Cisplatin Dose During Concurrent Chemoradiotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: A Secondary Analysis of a Prospective Phase III Clinical Trial. Oncologist, 2016, 21, 1369-1376.	1.9	50
42	Prognostic value of Diabetes in Patients with Nasopharyngeal Carcinoma Treated with Intensity-Modulated Radiation Therapy. Scientific Reports, 2016, 6, 22200.	1.6	7
43	The Cumulative Cisplatin Dose Affects the Long-Term Survival Outcomes of Patients with Nasopharyngeal Carcinoma Receiving Concurrent Chemoradiotherapy. Scientific Reports, 2016, 6, 24332.	1.6	22
44	The Tumour Response to Induction Chemotherapy has Prognostic Value for Long-Term Survival Outcomes after Intensity-Modulated Radiation Therapy in Nasopharyngeal Carcinoma. Scientific Reports, 2016, 6, 24835.	1.6	52
45	Risk stratification based on change in plasma Epstein-Barr virus DNA load after treatment in nasopharyngeal carcinoma. Oncotarget, 2016, 7, 9576-9585.	0.8	19
46	Cigarette smoking complements the prognostic value of baseline plasma Epstein-Barr virus deoxyribonucleic acid in patients with nasopharyngeal carcinoma undergoing intensity-modulated radiation therapy: a large-scale retrospective cohort study. Oncotarget, 2016, 7, 16806-16817.	0.8	9
47	Primary tumor inflammation in gross tumor volume as a prognostic factor for nasopharyngeal carcinoma patients. Oncotarget, 2016, 7, 14963-14972.	0.8	4
48	Prognostic value of wait time in nasopharyngeal carcinoma treated with intensity modulated radiotherapy: a propensitymatched analysis. Oncotarget, 2016, 7, 14973-14982.	0.8	21
49	The efficacy and toxicity of individualized intensity-modulated radiotherapy based on the tumor extension patterns of nasopharyngeal carcinoma. Oncotarget, 2016, 7, 20680-20690.	0.8	15
50	Neoadjuvant chemotherapy in locally advanced nasopharyngeal carcinoma: Defining high-risk patients who may benefit before concurrent chemotherapy combined with intensity-modulated radiotherapy. Scientific Reports, 2015, 5, 16664.	1.6	34
51	Prognostic value of parotid lymph node metastasis in patients with nasopharyngeal carcinoma receiving intensity-modulated radiotherapy. Scientific Reports, 2015, 5, 13919.	1.6	10
52	Efficacy of Concurrent Chemotherapy for Intermediate Risk NPC in the Intensity-Modulated Radiotherapy Era: a Propensity-Matched Analysis. Scientific Reports, 2015, 5, 17378.	1.6	23
53	Investigation of the feasibility of elective irradiation to neck level Ib using intensity-modulated radiotherapy for patients with nasopharyngeal carcinoma: a retrospective analysis. BMC Cancer, 2015, 15, 709.	1.1	29
54	Value of the prognostic nutritional index and weight loss in predicting metastasis and long-term mortality in nasopharyngeal carcinoma. Journal of Translational Medicine, 2015, 13, 364.	1.8	67

#	Article	IF	CITATIONS
55	Propensity-matched analysis of three different chemotherapy sequences in patients with locoregionally advanced nasopharyngeal carcinoma treated using intensity-modulated radiotherapy. BMC Cancer, 2015, 15, 810.	1.1	24
56	Dosimetric benefit to organs at risk following margin reductions in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy. Chinese Journal of Cancer, 2015, 34, 189-97.	4.9	12
57	Clinical Outcomes of Volume-Modulated Arc Therapy in 205 Patients with Nasopharyngeal Carcinoma: An Analysis of Survival and Treatment Toxicities. PLoS ONE, 2015, 10, e0129679.	1.1	20
58	Efficacy of the Additional Neoadjuvant Chemotherapy to Concurrent Chemoradiotherapy for Patients with Locoregionally Advanced Nasopharyngeal Carcinoma: a Bayesian Network Meta-analysis of Randomized Controlled Trials. Journal of Cancer, 2015, 6, 883-892.	1.2	68
59	Comorbidity predicts poor prognosis in nasopharyngeal carcinoma: Development and validation of a predictive score model. Radiotherapy and Oncology, 2015, 114, 249-256.	0.3	21
60	Identification of miR-143 as a tumour suppressor in nasopharyngeal carcinoma based on microRNA expression profiling. International Journal of Biochemistry and Cell Biology, 2015, 61, 120-128.	1.2	30
61	Surrogate endpoints for overall survival in combined chemotherapy and radiotherapy trials in nasopharyngeal carcinoma: Meta-analysis of randomised controlled trials. Radiotherapy and Oncology, 2015, 116, 157-166.	0.3	24
62	Prognostic Value and Staging Classification of Retropharyngeal Lymph Node Metastasis in Nasopharyngeal Carcinoma Patients Treated with Intensity-modulated Radiotherapy. PLoS ONE, 2014, 9, e108375.	1.1	35
63	Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. Radiotherapy and Oncology, 2014, 110, 390-397.	0.3	126