
## Ana Rey-Rico

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986378/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Hydrogelâ€Guided, rAAVâ€Mediated IGFâ€l Overexpression Enables Longâ€Term Cartilage Repair and Protection<br>against Perifocal Osteoarthritis in a Largeâ€Animal Fullâ€Thickness Chondral Defect Model at One Year In<br>Vivo. Advanced Materials, 2021, 33, e2008451. | 11.1 | 47        |
| 2  | Biomaterial-assisted gene therapy for translational approaches to treat musculoskeletal disorders.<br>Materials Today Advances, 2021, 9, 100126.                                                                                                                       | 2.5  | 4         |
| 3  | Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic<br>Biomolecules. ACS Biomaterials Science and Engineering, 2021, 7, 4102-4127.                                                                                                | 2.6  | 64        |
| 4  | pNaSS-Grafted PCL Film-Guided rAAV TGF-β Gene Therapy Activates the Chondrogenic Activities in Human<br>Bone Marrow Aspirates. Human Gene Therapy, 2021, 32, 895-906.                                                                                                  | 1.4  | 4         |
| 5  | Niosomes-based gene delivery systems for effective transfection of human mesenchymal stem cells.<br>Materials Science and Engineering C, 2021, 128, 112307.                                                                                                            | 3.8  | 11        |
| 6  | Thermosensitive Hydrogel Based on PEO–PPO–PEO Poloxamers for a Controlled In Situ Release of<br>Recombinant Adenoâ€Associated Viral Vectors for Effective Gene Therapy of Cartilage Defects. Advanced<br>Materials, 2020, 32, e1906508.                                | 11.1 | 108       |
| 7  | Scaffold-Mediated Gene Delivery for Osteochondral Repair. Pharmaceutics, 2020, 12, 930.                                                                                                                                                                                | 2.0  | 16        |
| 8  | Hydrogel-Based Localized Nonviral Gene Delivery in Regenerative Medicine Approaches—An Overview.<br>Pharmaceutics, 2020, 12, 752.                                                                                                                                      | 2.0  | 32        |
| 9  | rAAV-Mediated Overexpression of SOX9 and TGF-β via Carbon Dot-Guided Vector Delivery Enhances the<br>Biological Activities in Human Bone Marrow-Derived Mesenchymal Stromal Cells. Nanomaterials,<br>2020, 10, 855.                                                    | 1.9  | 15        |
| 10 | Enhanced Chondrogenic Differentiation Activities in Human Bone Marrow Aspirates via sox9<br>Overexpression Mediated by pNaSS-Grafted PCL Film-Guided rAAV Gene Transfer. Pharmaceutics, 2020,<br>12, 280.                                                              | 2.0  | 15        |
| 11 | Therapeutic Delivery of rAAV sox9 via Polymeric Micelles Counteracts the Effects of<br>Osteoarthritis-Associated Inflammatory Cytokines in Human Articular Chondrocytes. Nanomaterials,<br>2020, 10, 1238.                                                             | 1.9  | 10        |
| 12 | Controlled Release of rAAV Vectors from APMA-Functionalized Contact Lenses for Corneal Gene<br>Therapy. Pharmaceutics, 2020, 12, 335.                                                                                                                                  | 2.0  | 15        |
| 13 | Effective genetic modification of human bone marrow-derived mesenchymal stem cells upon control delivery of raav vectors via carbon dot nanocarriers. Osteoarthritis and Cartilage, 2019, 27, S153-S154.                                                               | 0.6  | 1         |
| 14 | Effects of rAAV-Mediated sox9 Overexpression on the Biological Activities of Human Osteoarthritic<br>Articular Chondrocytes in Their Intrinsic Three-Dimensional Environment. Journal of Clinical<br>Medicine, 2019, 8, 1637.                                          | 1.0  | 8         |
| 15 | Remodeling of Human Osteochondral Defects via rAAV-Mediated Co-Overexpression of TGF-Î <sup>2</sup> and IGF-I<br>from Implanted Human Bone Marrow-Derived Mesenchymal Stromal Cells. Journal of Clinical<br>Medicine, 2019, 8, 1326.                                   | 1.0  | 4         |
| 16 | Chondrogenic differentiation processes in human bone marrow-derived mesenchymal stem cells upon raav mediated co-overexpression of TGF-B and IGF-I. Osteoarthritis and Cartilage, 2019, 27, S151-S152.                                                                 | 0.6  | 0         |
| 17 | Current Trends in Viral Gene Therapy for Human Orthopaedic Regenerative Medicine. Tissue<br>Engineering and Regenerative Medicine, 2019, 16, 345-355.                                                                                                                  | 1.6  | 19        |
| 18 | Therapeutic Effects of rAAV-Mediated Concomittant Gene Transfer and Overexpression of TGF-Î <sup>2</sup> and<br>IGF-I on the Chondrogenesis of Human Bone-Marrow-Derived Mesenchymal Stem Cells. International<br>Journal of Molecular Sciences, 2019, 20, 2591.       | 1.8  | 8         |

| #  | Article                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | rAAV mediated combined gene transfer and overexpression of TGF-beta and IGF-I in human bone<br>marrow-derived mesenchymal stem cells upon implantation in a human osteochondral defect model.<br>Osteoarthritis and Cartilage, 2019, 27, S152-S153.                                                 | 0.6 | 1         |
| 20 | Carbon dots nanocarriers for the effective rAAV mediated transduction of human osteoarthritic chondrocytes in vitro. Osteoarthritis and Cartilage, 2019, 27, S154-S155.                                                                                                                             | 0.6 | 1         |
| 21 | Supramolecular Cyclodextrin-Based Hydrogels for Controlled Gene Delivery. Polymers, 2019, 11, 514.                                                                                                                                                                                                  | 2.0 | 37        |
| 22 | Antimicrobial Properties and Osteogenicity of Vancomycin-Loaded Synthetic Scaffolds Obtained by Supercritical Foaming. ACS Applied Materials & amp; Interfaces, 2018, 10, 3349-3360.                                                                                                                | 4.0 | 42        |
| 23 | Chondrogenic Differentiation Processes in Human Bone-Marrow Aspirates Seeded in<br>Three-Dimensional-Woven Poly(É>-Caprolactone) Scaffolds Enhanced by Recombinant Adeno-Associated<br>Virus–MediatedSOX9Gene Transfer. Human Gene Therapy, 2018, 29, 1277-1286.                                    | 1.4 | 12        |
| 24 | Improved Chondrogenic Differentiation of rAAV SOX9-Modified Human MSCs Seeded in<br>Fibrin-Polyurethane Scaffolds in a Hydrodynamic Environment. International Journal of Molecular<br>Sciences, 2018, 19, 2635.                                                                                    | 1.8 | 18        |
| 25 | Effective Remodelling of Human Osteoarthritic Cartilage by <i>sox9</i> Gene Transfer and<br>Overexpression upon Delivery of rAAV Vectors in Polymeric Micelles. Molecular Pharmaceutics, 2018,<br>15, 2816-2826.                                                                                    | 2.3 | 29        |
| 26 | Sustained spatiotemporal release of TGFâ€Ĵ²1 confers enhanced very early chondrogenic differentiation during osteochondral repair in specific topographic patterns. FASEB Journal, 2018, 32, 5298-5311.                                                                                             | 0.2 | 16        |
| 27 | rAAV SOX9 gene transfer stimulates the chondrogenic differentiation activities in human peripheral blood aspirates. Osteoarthritis and Cartilage, 2018, 26, S143.                                                                                                                                   | 0.6 | 0         |
| 28 | PEO-PPO-PEO Tri-Block Copolymers for Gene Delivery Applications in Human Regenerative Medicine—An<br>Overview. International Journal of Molecular Sciences, 2018, 19, 775.                                                                                                                          | 1.8 | 59        |
| 29 | Controlled Gene Delivery Systems for Articular Cartilage Repair. Advanced Structured Materials, 2017, , 261-300.                                                                                                                                                                                    | 0.3 | 1         |
| 30 | Effects of combined rAAV-mediated TGF-Î <sup>2</sup> and sox9 gene transfer and overexpression on the metabolic and chondrogenic activities in human bone marrow aspirates. Journal of Experimental Orthopaedics, 2017, 4, 4.                                                                       | 0.8 | 5         |
| 31 | Peripheral blood aspirates overexpressing IGFâ€I <i>via</i> rAAV gene transfer undergo enhanced chondrogenic differentiation processes. Journal of Cellular and Molecular Medicine, 2017, 21, 2748-2758.                                                                                            | 1.6 | 9         |
| 32 | Supramolecular polypseudorotaxane gels for controlled delivery of rAAV vectors in human<br>mesenchymal stem cells for regenerative medicine. International Journal of Pharmaceutics, 2017, 531,<br>492-503.                                                                                         | 2.6 | 33        |
| 33 | Hydrogels for precision meniscus tissue engineering: a comprehensive review. Connective Tissue<br>Research, 2017, 58, 317-328.                                                                                                                                                                      | 1.1 | 25        |
| 34 | Impact of mechanical stimulation on the chondrogenic processes in human bone marrow aspirates modified to overexpress sox9 via rAAV vectors. Journal of Experimental Orthopaedics, 2017, 4, 22.                                                                                                     | 0.8 | 9         |
| 35 | Genetic Modification of Human Peripheral Blood Aspirates Using Recombinant Adeno-Associated Viral<br>Vectors for Articular Cartilage Repair with a Focus on Chondrogenic Transforming Growth Factor-Î <sup>2</sup><br>Gene Delivery. Stem Cells Translational Medicine, 2017, 6, 249-260.           | 1.6 | 11        |
| 36 | rAAV-mediated overexpression of TGF-β via vector delivery in polymeric micelles<br>stimulates the biological and reparative activities of human articular chondrocytes in vitro and in a<br>human osteochondral defect model. International Journal of Nanomedicine, 2017, Volume 12,<br>6985-6996. | 3.3 | 33        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Smart and Controllable rAAV Gene Delivery Carriers in Progenitor Cells for Human Musculoskeletal<br>Regenerative Medicine with a Focus on the Articular Cartilage. Current Gene Therapy, 2017, 17, 127-138.                                | 0.9 | 7         |
| 38 | Hydrogel-Based Controlled Delivery Systems for Articular Cartilage Repair. BioMed Research<br>International, 2016, 2016, 1-12.                                                                                                             | 0.9 | 39        |
| 39 | rAAVâ€mediated combined gene transfer and overexpression of TGFâ€Î² and SOX9 remodels human<br>osteoarthritic articular cartilage. Journal of Orthopaedic Research, 2016, 34, 2181-2190.                                                   | 1.2 | 23        |
| 40 | Biomedical-grade, high mannuronic acid content (BioMVM) alginate enhances the proteoglycan<br>production of primary human meniscal fibrochondrocytes in a 3-D microenvironment. Scientific<br>Reports, 2016, 6, 28170.                     | 1.6 | 14        |
| 41 | Recent tissue engineering-based advances for effective rAAV-mediated gene transfer in the musculoskeletal system. Bioengineered, 2016, 7, 175-188.                                                                                         | 1.4 | 11        |
| 42 | RAAV-mediated combined gene transfer and overexpression of TGF-Î <sup>2</sup> and SOX9 remodels human osteoarthritic articular cartilage. Osteoarthritis and Cartilage, 2016, 24, S397-S398.                                               | 0.6 | 0         |
| 43 | <scp>TGF</scp> â€Î² gene transfer and overexpression <i>via</i> <scp>rAAV</scp> vectors stimulates<br>chondrogenic events in human bone marrow aspirates. Journal of Cellular and Molecular Medicine,<br>2016, 20, 430-440.                | 1.6 | 16        |
| 44 | Effects of rAAV-mediated FGF-2 gene transfer and overexpression upon the chondrogenic<br>differentiation processes in human bone marrow aspirates. Journal of Experimental Orthopaedics,<br>2016, 3, 16.                                   | 0.8 | 8         |
| 45 | PEO-PPO-PEO Carriers for rAAV-Mediated Transduction of Human Articular Chondrocytes in Vitro and in a Human Osteochondral Defect Model. ACS Applied Materials & Interfaces, 2016, 8, 20600-20613.                                          | 4.0 | 38        |
| 46 | Co-overexpression of TGF-Î <sup>2</sup> and SOX9 via rAAV gene transfer modulates the metabolic and chondrogenic activities of human bone marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2016, 7, 20.              | 2.4 | 24        |
| 47 | rAAV-mediated overexpression of sox9, TGF-β and IGF-I in minipig bone marrow aspirates to enhance the chondrogenic processes for cartilage repair. Gene Therapy, 2016, 23, 247-255.                                                        | 2.3 | 26        |
| 48 | Controlled release strategies for rAAV-mediated gene delivery. Acta Biomaterialia, 2016, 29, 1-10.                                                                                                                                         | 4.1 | 40        |
| 49 | 405. Enhanced Chondrogenic Potential of Human Bone Marrow Aspirates Upon rAAV-Mediated<br>Overexpression of IGF-I. Molecular Therapy, 2015, 23, S160.                                                                                      | 3.7 | 0         |
| 50 | Supramolecular cyclodextrin-based drug nanocarriers. Chemical Communications, 2015, 51, 6275-6289.                                                                                                                                         | 2.2 | 142       |
| 51 | Effective and durable genetic modification of human mesenchymal stem cells via controlled release of rAAV vectors from self-assembling peptide hydrogels with a maintained differentiation potency. Acta Biomaterialia, 2015, 18, 118-127. | 4.1 | 47        |
| 52 | Effects of exosomes upon the metabolic activities of human osteoarthritic articular cartilage in situ.<br>Osteoarthritis and Cartilage, 2015, 23, A399.                                                                                    | 0.6 | 5         |
| 53 | Effects of IGF-I overexpression on the chondrogenic potential of human bone marrow aspirates modified via rAAV gene transfer. Osteoarthritis and Cartilage, 2015, 23, A365.                                                                | 0.6 | 0         |
| 54 | PEO–PPO–PEO micelles as effective rAAV-mediated gene delivery systems to target human mesenchymal stem cells without altering their differentiation potency. Acta Biomaterialia, 2015, 27, 42-52.                                          | 4.1 | 50        |

| #  | Article                                                                                                                                                                                                                                                                              | IF             | CITATIONS          |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|
| 55 | Chondrogenic Differentiation Processes in Human Bone Marrow Aspirates upon rAAV-Mediated Gene<br>Transfer and Overexpression of the Insulin-Like Growth Factor I. Tissue Engineering - Part A, 2015, 21,<br>2460-2471.                                                               | 1.6            | 20                 |
| 56 | Effective genetic modification and differentiation of hMSCs upon controlled release of rAAV vectors<br>using alginate/poloxamer composite systems. International Journal of Pharmaceutics, 2015, 496,<br>614-626.                                                                    | 2.6            | 29                 |
| 57 | Adapted chondrogenic differentiation of human mesenchymal stem cells via controlled release of<br>TGF-i²1 from poly(ethylene oxide)-terephtalate/poly(butylene terepthalate) multiblock scaffolds. Journal<br>of Biomedical Materials Research - Part A, 2015, 103, 371-383.         | 2.1            | 23                 |
| 58 | Determination of effective rAAV-mediated gene transfer conditions to support chondrogenic differentiation processes in human primary bone marrow aspirates. Gene Therapy, 2015, 22, 50-57.                                                                                           | 2.3            | 31                 |
| 59 | Current Progress in Stem Cell-Based Gene Therapy for Articular Cartilage Repair. Current Stem Cell<br>Research and Therapy, 2015, 10, 121-131.                                                                                                                                       | 0.6            | 43                 |
| 60 | Current perspectives in stem cell research for knee cartilage repair. Stem Cells and Cloning: Advances and Applications, 2014, 7, 1.                                                                                                                                                 | 2.3            | 64                 |
| 61 | Determination of the Chondrogenic Differentiation Processes in Human Bone Marrow-Derived<br>Mesenchymal Stem Cells Genetically Modified to Overexpress Transforming Growth Factor-β via<br>Recombinant Adeno-Associated Viral Vectors. Human Gene Therapy, 2014, 25, 1050-1060.      | 1.4            | 47                 |
| 62 | Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector<br>gene transfer upon the biological activities and differentiation potential of human bone<br>marrow-derived mesenchymal stem cells. Stem Cell Research and Therapy, 2014, 5, 103. | 2.4            | 42                 |
| 63 | Transforming Growth Factor Beta-Releasing Scaffolds for Cartilage Tissue Engineering. Tissue<br>Engineering - Part B: Reviews, 2014, 20, 106-125.                                                                                                                                    | 2.5            | 114                |
| 64 | Nonviral gene transfer into human meniscal cells. Part II: effect of three-dimensional environment<br>and overexpression of human fibroblast growth factor 2. International Orthopaedics, 2014, 38,<br>1931-1936.                                                                    | 0.9            | 10                 |
| 65 | rAAV-mediated overexpression of TGF-β stably restructures human osteoarthritic articular cartilage in<br>situ. Journal of Translational Medicine, 2013, 11, 211.                                                                                                                     | 1.8            | 51                 |
| 66 | Poly(styrene oxide)-poly(ethylene oxide) block copolymers: From "classical―chemotherapeutic<br>nanocarriers to active cell-response inducers. Journal of Controlled Release, 2013, 167, 68-75.                                                                                       | 4.8            | 27                 |
| 67 | Doxorubicin-loaded micelles of reverse poly(butylene oxide)–poly(ethylene oxide)–poly(butylene) Tj ETQq1 I<br>Pharmaceutics, 2013, 445, 47-57.                                                                                                                                       | 0.78431<br>2.6 | 4 rgBT /Over<br>30 |
| 68 | Wound dressings loaded with an anti-inflammatory jucá (Libidibia ferrea) extract using supercritical<br>carbon dioxide technology. Journal of Supercritical Fluids, 2013, 74, 34-45.                                                                                                 | 1.6            | 69                 |
| 69 | Polyethylene Oxide-Polystyrene Oxide Triblock Copolymers as Biological-Responsive Nanocarriers<br>Materials Research Society Symposia Proceedings, 2012, 1468, 7.                                                                                                                    | 0.1            | 1                  |
| 70 | Poly(ethylene oxide)–poly(styrene oxide)–poly(ethylene oxide) copolymers: Micellization, drug<br>solubilization, and gelling features. Journal of Colloid and Interface Science, 2012, 387, 275-284.                                                                                 | 5.0            | 18                 |
| 71 | Hot melt poly-ε-caprolactone/poloxamine implantable matrices for sustained delivery of ciprofloxacin.<br>Acta Biomaterialia, 2012, 8, 1507-1518.                                                                                                                                     | 4.1            | 57                 |
| 72 | Bio-inspired porous SiC ceramics loaded with vancomycin for preventing MRSA infections. Journal of<br>Materials Science: Materials in Medicine, 2011, 22, 339-347.                                                                                                                   | 1.7            | 18                 |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Osteogenic efficiency of in situ gelling poloxamine systems with and without bone morphogenetic protein-2. , 2011, 21, 317-340.                                                                 |     | 49        |
| 74 | Inhibition of P-glycoprotein pumps by PEO–PPO amphiphiles: branched versus linear derivatives.<br>Nanomedicine, 2010, 5, 1371-1383.                                                             | 1.7 | 46        |
| 75 | Poloxamine-based nanomaterials for drug delivery. Frontiers in Bioscience - Elite, 2010, E2, 424-440.                                                                                           | 0.9 | 82        |
| 76 | N-alkylation of poloxamines modulates micellar assembly and encapsulation and release of the antiretroviral efavirenz. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76, 24-37. | 2.0 | 73        |