Slobodan Djordjevic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986199/publications.pdf Version: 2024-02-01

SLOBODAN DIORDIEVIC

#	Article	IF	CITATIONS
1	Urban flood impact assessment: A state-of-the-art review. Urban Water Journal, 2015, 12, 14-29.	1.0	441
2	Potential and limitations of 1D modelling of urban flooding. Journal of Hydrology, 2004, 299, 284-299.	2.3	253
3	Comparison of 1D/1D and 1D/2D Coupled (Sewer/Surface) Hydraulic Models for Urban Flood Simulation. Journal of Hydraulic Engineering, 2009, 135, 495-504.	0.7	246
4	An integrated framework for high-resolution urban flood modelling considering multiple information sources and urban features. Environmental Modelling and Software, 2018, 107, 85-95.	1.9	150
5	A weighted cellular automata 2D inundation model for rapid flood analysis. Environmental Modelling and Software, 2016, 84, 378-394.	1.9	147
6	Overland flow and pathway analysis for modelling of urban pluvial flooding. Journal of Hydraulic Research/De Recherches Hydrauliques, 2009, 47, 512-523.	0.7	132
7	SIPSON – Simulation of Interaction between Pipe flow and Surface Overland flow in Networks. Water Science and Technology, 2005, 52, 275-283.	1.2	116
8	Attribution of flood risk in urban areas. Journal of Hydroinformatics, 2008, 10, 275-288.	1.1	98
9	Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. Journal of Hydroinformatics, 2013, 15, 676-686.	1.1	95
10	An approach to simulation of dual drainage. Water Science and Technology, 1999, 39, 95-103.	1.2	94
11	New policies to deal with climate change and other drivers impacting on resilience to flooding in urban areas: the CORFU approach. Environmental Science and Policy, 2011, 14, 864-873.	2.4	89
12	Experimental calibration and validation of sewer/surface flow exchange equations in steady and unsteady flow conditions. Journal of Hydrology, 2017, 552, 421-432.	2.3	64
13	Stability criteria for flooded vehicles: a stateâ€ofâ€ŧheâ€∎rt review. Journal of Flood Risk Management, 2018, 11, .	1.6	63
14	Calibration of a 1D/1D urban flood model using 1D/2D model results in the absence of field data. Water Science and Technology, 2011, 64, 1016-1024.	1.2	59
15	A coarse-grid approach to representing building blockage effects in 2D urban flood modelling. Journal of Hydrology, 2012, 426-427, 1-16.	2.3	59
16	A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding. Urban Water Journal, 2017, 14, 930-939.	1.0	59
17	From hazard to impact: flood damage assessment tools for mega cities. Natural Hazards, 2016, 82, 857-890.	1.6	55
18	An analysis of the combined consequences of pluvial and fluvial flooding. Water Science and Technology, 2010, 62, 1491-1498.	1.2	54

#	Article	IF	CITATIONS
19	Analysis of extreme flooding events through a calibrated 1D/2D coupled model: the case of Barcelona (Spain). Journal of Hydroinformatics, 2015, 17, 473-491.	1.1	54
20	An approach to simulation of dual drainage. Water Science and Technology, 1999, 39, 95.	1.2	53
21	Modelling sewer failure by evolutionary computing. Water Management, 2006, 159, 111-118.	0.4	51
22	The effect of inclusion of inlets in dual drainage modelling. Journal of Hydrology, 2018, 559, 541-555.	2.3	49
23	Exploring the potential climate change impact on urban growth in London by a cellular automata-based Markov chain model. Computers, Environment and Urban Systems, 2018, 68, 121-132.	3.3	49
24	Multi-layered coarse grid modelling in 2D urban flood simulations. Journal of Hydrology, 2012, 470-471, 1-11.	2.3	48
25	Experimental and numerical investigation of interactions between above and below ground drainage systems. Water Science and Technology, 2013, 67, 535-542.	1.2	48
26	Integration of research advances in modelling and monitoring in support of WFD river basin management planning in the context of climate change. Science of the Total Environment, 2012, 440, 167-177.	3.9	45
27	Modelling sewer discharge via displacement of manhole covers during flood events using 1D/2D SIPSON/P-DWave dual drainage simulations. Urban Water Journal, 2016, 13, 830-840.	1.0	45
28	Assessing the knock-on effects of flooding on road transportation. Journal of Environmental Management, 2019, 244, 48-60.	3.8	45
29	A comparison of three dual drainage models: shallow water vs local inertial vs diffusive wave. Journal of Hydroinformatics, 2017, 19, 331-348.	1.1	42
30	Assessing and visualising hazard impacts to enhance the resilience of Critical Infrastructures to urban flooding. Science of the Total Environment, 2020, 707, 136078.	3.9	40
31	Separating aleatory and epistemic uncertainties: Probabilistic sewer flooding evaluation using probability box. Journal of Hydrology, 2012, 420-421, 360-372.	2.3	39
32	Influence of sewer network models on urban flood damage assessment based on coupled <scp>1D</scp> / <scp>2D</scp> models. Journal of Flood Risk Management, 2018, 11, .	1.6	37
33	On the Characteristics of Velocities Fields in the Vicinity of Manhole Inlet Grates During Flood Events. Water Resources Research, 2018, 54, 6408-6422.	1.7	37
34	A general framework for flood risk-based storm sewer network design. Urban Water Journal, 2011, 8, 13-27.	1.0	35
35	Accuracy and Computational Efficiency of 2D Urban Surface Flood Modelling Based on Cellular Automata. Procedia Engineering, 2016, 154, 801-810.	1.2	33
36	Simulation of Transcritical Flow in Pipe/Channel Networks. Journal of Hydraulic Engineering, 2004, 130, 1167-1178.	0.7	32

#	Article	IF	CITATIONS
37	Experimental Study on Scour at a Sharp-Nose Bridge Pier with Debris Blockage. Journal of Hydraulic Engineering, 2018, 144, .	0.7	32
38	A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience. Urban Water Journal, 2018, 15, 427-436.	1.0	31
39	A practical method to assess risks from large wood debris accumulations at bridge piers. Science of the Total Environment, 2020, 728, 138575.	3.9	28
40	Resilience to Cope with Climate Change in Urban Areas—A Multisectorial Approach Focusing on Water—The RESCCUE Project. Water (Switzerland), 2018, 10, 1356.	1.2	26
41	The Nile Water-Food-Energy Nexus under Uncertainty: Impacts of the Grand Ethiopian Renaissance Dam. Journal of Water Resources Planning and Management - ASCE, 2020, 146, .	1.3	26
42	A well balanced Roe scheme for the local inertial equations with an unstructured mesh. Advances in Water Resources, 2015, 83, 351-363.	1.7	25
43	Validation of 2D shock capturing flood models around a surcharging manhole. Urban Water Journal, 2017, 14, 892-899.	1.0	25
44	A multi-model approach to the simulation of large scale karst flows. Journal of Hydrology, 2008, 348, 412-424.	2.3	24
45	Investigating the Effects of Pluvial Flooding and Climate Change on Traffic Flows in Barcelona and Bristol. Sustainability, 2020, 12, 2330.	1.6	23
46	Assessing the potential for real-time urban flood forecasting based on a worldwide survey on data availability. Urban Water Journal, 2014, 11, 573-583.	1.0	21
47	Incorporating spatial and temporal information for urban drainage model calibration: An approach using preference ordering genetic algorithm. Advances in Water Resources, 2006, 29, 1168-1181.	1.7	18
48	Quick and accurate Cellular Automata sewer simulator. Journal of Hydroinformatics, 2014, 16, 1359-1374.	1.1	18
49	Analytical Solution of the Classical Dam-Break Problem for the Gravity Wave–Model Equations. Journal of Hydraulic Engineering, 2016, 142, .	0.7	17
50	Methodological Framework for Analysing Cascading Effects from Flood Events: The Case of Sukhumvit Area, Bangkok, Thailand. Water (Switzerland), 2018, 10, 81.	1.2	17
51	Mathematical model of unsteady transport and its experimental verification in a compound open channel flow. Journal of Hydraulic Research/De Recherches Hydrauliques, 1993, 31, 229-248.	0.7	16
52	The influence of channel geometry on tidal energy extraction in estuaries. Renewable Energy, 2017, 101, 514-525.	4.3	15
53	A realâ€ŧime pluvial flood forecasting system for Castries, St. Lucia. Journal of Flood Risk Management, 2018, 11, .	1.6	14
54	Mapping urban infrastructure interdependencies and fuzzy risks. Procedia Engineering, 2018, 212, 816-823.	1.2	13

#	Article	IF	CITATIONS
55	Back to the future: assessing the damage of 2004 Dhaka flood in the 2050 urban environment. Journal of Flood Risk Management, 2018, 11, .	1.6	13
56	A method for evaluating local scour depth at bridge piers due to debris accumulation. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2020, 173, 86-99.	0.3	13
57	Predictive risk modelling of real-world wastewater network incidents. Procedia Engineering, 2015, 119, 1288-1298.	1.2	12
58	Implications of rising flood-risk for employment location: a GMM spatial model with agglomeration and endogenous house price effects. Journal of Property Research, 2013, 30, 298-323.	1.7	11
59	Wetting and drying numerical treatments for the Roe Riemann scheme. Journal of Hydraulic Research/De Recherches Hydrauliques, 2018, 56, 256-267.	0.7	11
60	Land-Use and Legislation-Based Methodology for the Implementation of Sustainable Drainage Systems in the Semi-Arid Region of Brazil. Sustainability, 2020, 12, 661.	1.6	11
61	3D visualisation tool for improving the resilience to urban and coastal flooding in Torbay, UK. Procedia Engineering, 2018, 212, 809-815.	1.2	10
62	An integrated socio-environmental framework for mapping hazard-specific vulnerability and exposure in urban areas. Urban Water Journal, 2021, 18, 530-543.	1.0	10
63	Place-Based Citizen Science for Assessing Risk Perception and Coping Capacity of Households Affected by Multiple Hazards. Sustainability, 2021, 13, 302.	1.6	10
64	Decision making in flood risk based storm sewer network design. Water Science and Technology, 2011, 64, 247-254.	1.2	9
65	A fast approach for multiobjective design of water distribution networks under demand uncertainty. Journal of Hydroinformatics, 2011, 13, 143-152.	1.1	9
66	Analytical and numerical solutions of the Local Inertial Equations. International Journal of Non-Linear Mechanics, 2016, 81, 222-229.	1.4	9
67	Developing Decision Tree Models to Create a Predictive Blockage Likelihood Model for Real-World Wastewater Networks. Procedia Engineering, 2016, 154, 1209-1216.	1.2	8
68	Interlinking Bristol Based Models to Build Resilience to Climate Change. Sustainability, 2020, 12, 3233.	1.6	8
69	Hydrodynamic effects of debris blockage and scour on masonry bridges: Towards experimental modelling. , 2016, , .		8
70	Uncertainties in Flood Modelling in Urban Areas. , 2014, , 297-334.		7
71	The impacts of tidal turbines on water levels in a shallow estuary. International Journal of Marine Energy, 2017, 19, 177-197.	1.8	7
72	Targeting property flood resilience in flood risk management. Journal of Flood Risk Management, 2021, 14, e12723.	1.6	7

#	Article	IF	CITATIONS
73	Understanding the NEEDS for ACTING: An integrated framework for applying nature-based solutions in Brazil. Water Science and Technology, 2022, 85, 987-1010.	1.2	7
74	Case study of the cascading effects on critical infrastructure in Torbay coastal/pluvial flooding with climate change and 3D visualisation. Journal of Hydroinformatics, 2020, 22, 77-92.	1.1	6
75	Water-food-energy nexus for transboundary cooperation in Eastern Africa. Water Science and Technology: Water Supply, 2022, 22, 3567-3587.	1.0	6
76	The Use of Telemetry Data for the Identification of Issues at Combined Sewer Overflows. Procedia Engineering, 2016, 154, 1201-1208.	1.2	5
77	Exploring the implications of tidal farms deployment for wetland-birds habitats in a highly protected estuary. Marine Policy, 2017, 81, 359-367.	1.5	5
78	Using public participation within land use change scenarios for analysing environmental and socioeconomic drivers. Environmental Research Letters, 2022, 17, 025002.	2.2	5
79	Sampling rainfall events: a novel approach to generate large correlated samples. Hydrology Research, 2013, 44, 351-361.	1.1	4
80	Increased Urban Resilience to Climate Change—Key Outputs from the RESCCUE Project. Sustainability, 2020, 12, 9881.	1.6	4
81	Multi-Temporal Built-Up Grids of Brazilian Cities: How Trends and Dynamic Modelling Could Help on Resilience Challenges?. Sustainability, 2021, 13, 748.	1.6	4
82	A novel approach to flood risk assessment: the Exposure-Vulnerability matrices. E3S Web of Conferences, 2016, 7, 08007.	0.2	3
83	Prediction of flow around a sharp-nosed bridge pier: influence of the Froude number and free-surface variation on the flow field. Journal of Hydraulic Research/De Recherches Hydrauliques, 2020, 58, 582-593.	0.7	3
84	Hydroinformatics education – the Water Informatics in Science and Engineering (WISE) Centre for Doctoral Training. Hydrology and Earth System Sciences, 2021, 25, 2721-2738.	1.9	3
85	Flume experiments on the impact of a cross-flow turbine on an erodible bed. Renewable Energy, 2020, 153, 1219-1225.	4.3	2
86	Cellular automata predictive model for man-made environment growth in a Brazilian semi-arid watershed. Environmental Monitoring and Assessment, 2021, 193, 323.	1.3	2
87	Application of Open Source CFD in Urban Water Management. , 2011, , .		1
88	Wastewater System Ventilation – A Friend or Adversary?. Green Energy and Technology, 2019, , 712-716.	0.4	1
89	Water systems modelling, data and control. Urban Water Journal, 2020, 17, 681-681.	1.0	0
90	SIPSON–simulation of interaction between pipe flow and surface overland flow in networks. Water Science and Technology, 2005, 52, 275-83.	1.2	0