
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7986063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hierarchical Scheme for LC-MSnIdentification of Chlorogenic Acids. Journal of Agricultural and Food Chemistry, 2003, 51, 2900-2911.	2.4	1,085
2	Discriminating between the Six Isomers of Dicaffeoylquinic Acid by LC-MSn. Journal of Agricultural and Food Chemistry, 2005, 53, 3821-3832.	2.4	599
3	Microwave-Assisted Reactions in Organic Synthesis—Are There Any Nonthermal Microwave Effects?. Angewandte Chemie - International Edition, 2002, 41, 1863.	7.2	279
4	LC–MSn analysis of the cis isomers of chlorogenic acids. Food Chemistry, 2008, 106, 379-385.	4.2	221
5	Profiling the Chlorogenic Acids and Other Caffeic Acid Derivatives of Herbal Chrysanthemum by LCâ^'MSn. Journal of Agricultural and Food Chemistry, 2007, 55, 929-936.	2.4	207
6	Characterization by LC-MSnof Four New Classes of Chlorogenic Acids in Green Coffee Beans:Â Dimethoxycinnamoylquinic Acids, Diferuloylquinic Acids, Caffeoyl-dimethoxycinnamoylquinic Acids, and Feruloyl-dimethoxycinnamoylquinic Acids. Journal of Agricultural and Food Chemistry, 2006, 54, 1957-1969.	2.4	191
7	Profiling and Characterization by LC-MS ^{<i>n</i>} of the Chlorogenic Acids and Hydroxycinnamoylshikimate Esters in Maté (Ilex paraguariensis). Journal of Agricultural and Food Chemistry, 2010, 58, 5471-5484.	2.4	189
8	The chemistry of low molecular weight black tea polyphenols. Natural Product Reports, 2010, 27, 417.	5.2	151
9	Characterization by LC-MSnof Four New Classes ofp-Coumaric Acid-ContainingÂDiacylÂChlorogenicÂAcidsÂinÂGreenÂCoffee Beans. Journal of Agricultural and Food Chemistry, 2006, 54, 4095-4101.	2.4	150
10	Profile and Characterization of the Chlorogenic Acids in Green Robusta Coffee Beans by LC-MS ^{<i>n</i>} : Identification of Seven New Classes of Compounds. Journal of Agricultural and Food Chemistry, 2010, 58, 8722-8737.	2.4	144
11	Chemistry inside molecular containers in the gas phase. Nature Chemistry, 2013, 5, 376-382.	6.6	144
12	ldentification and characterization of proanthocyanidins of 16 members of the <i>Rhododendron</i> genus (<i>Ericaceae</i>) by tandem LC–MS. Journal of Mass Spectrometry, 2012, 47, 502-515.	0.7	136
13	Absolute bioavailability and dose-dependent pharmacokinetic behaviour of dietary doses of the chemopreventive isothiocyanate sulforaphane in rat. British Journal of Nutrition, 2008, 99, 559-564.	1.2	133
14	Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry, 2011, 72, 781-790.	1.4	126
15	Mass spectrometric characterization of black tea thearubigins leading to an oxidative cascade hypothesis for thearubigin formation. Rapid Communications in Mass Spectrometry, 2010, 24, 3387-3404.	0.7	120
16	Identification and characterization of chlorogenic acids, chlorogenic acid glycosides and flavonoids from Lonicera henryi L. (Caprifoliaceae) leaves by LC–MS. Phytochemistry, 2014, 108, 252-263.	1.4	115
17	Unraveling the structure of the black tea thearubigins. Archives of Biochemistry and Biophysics, 2010, 501, 37-51.	1.4	113
18	Profiling the chlorogenic acids of aster by HPLC–MSn. Phytochemical Analysis, 2006, 17, 384-393.	1.2	109

#	Article	IF	CITATIONS
19	The synthesis of trianglimines: on the scope and limitations of the [3 + 3] cyclocondensation reaction between (1R,2R)-diaminocyclohexane and aromatic dicarboxaldehydes. Organic and Biomolecular Chemistry, 2003, 1, 1157-1170.	1.5	103
20	Profiling and Characterization by LC-MSnof the Galloylquinic Acids of Green Tea, Tara Tannin, and Tannic Acid. Journal of Agricultural and Food Chemistry, 2007, 55, 2797-2807.	2.4	102
21	Understanding the fate of chlorogenic acids in coffee roasting using mass spectrometry based targeted and non-targeted analytical strategies. Food and Function, 2012, 3, 976.	2.1	102
22	Identification of Phenolic Compounds in Plum Fruits (<i>Prunus salicina</i> L. and <i>Prunus) Tj ETQq0 0 0 rgB Characterization of Varieties by Quantitative Phenolic Fingerprints. Journal of Agricultural and Food Chemistry, 2013, 61, 12020-12031.</i>	T /Overlocł 2.4	2 10 Tf 50 632 101
23	Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: Evidence by tandem LC-MS. Food and Function, 2010, 1, 180.	2.1	78
24	Modulation of hepatic cytochromes P450 and phase II enzymes by dietary doses of sulforaphane in rats: Implications for its chemopreventive activity. International Journal of Cancer, 2005, 117, 356-362.	2.3	77
25	The chlorogenic acids of Hemerocallis. Food Chemistry, 2006, 95, 574-578.	4.2	77
26	Unraveling the Chemical Composition of Caramel. Journal of Agricultural and Food Chemistry, 2012, 60, 3266-3274.	2.4	75
27	Origin-based polyphenolic fingerprinting of Theobroma cacao in unfermented and fermented beans. Food Research International, 2017, 99, 550-559.	2.9	74
28	Characterization and Quantification of Hydroxycinnamate Derivatives in Stevia rebaudiana Leaves by LC-MS ^{<i>n</i>), Journal of Agricultural and Food Chemistry, 2011, 59, 10143-10150.}	2.4	72
29	Synthesis of novel enantiomerically pure trianglimine and trianglamine macrocycles. Tetrahedron: Asymmetry, 2002, 13, 123-128.	1.8	65
30	Hierarchical scheme for liquid chromatography/multiâ€stage spectrometric identification of 3,4,5â€triacyl chlorogenic acids in green Robusta coffee beans. Rapid Communications in Mass Spectrometry, 2010, 24, 2283-2294.	0.7	65
31	Differentiation of black tea infusions according to origin, processing and botanical varieties using multivariate statistical analysis of LC-MS data. Food Research International, 2018, 109, 387-402.	2.9	65
32	Recommendations for standardizing nomenclature for dietary (poly)phenol catabolites. American Journal of Clinical Nutrition, 2020, 112, 1051-1068.	2.2	65
33	Identification and characterization of five new classes of chlorogenic acids in burdock (Arctium) Tj ETQq1 1 0.7	84314 rgB 2.1	T /Qyerlock 1
34	Profiling the chlorogenic acids of <i>Rudbeckia hirta</i> , <i>Helianthus tuberosus</i> , <i>Carlina acaulis</i> and <i>Symphyotrichum novaeâ€angliae</i> leaves by LCâ€MS <i>ⁿ</i> . Phytochemical Analysis, 2011, 22, 432-441.	1.2	64
35	How to distinguish between feruloyl quinic acids and isoferuloyl quinic acids by liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 1575-1582.	0.7	62
36	How to identify and discriminate between the methyl quinates of chlorogenic acids by liquid chromatography–tandem mass spectrometry. Journal of Mass Spectrometry, 2011, 46, 269-281.	0.7	61

#	Article	IF	CITATIONS
37	Bistrifluoromethanesulfonimide in the catalytic conjugate allylation of α,β-unsaturated carbonyl compounds. Tetrahedron Letters, 1998, 39, 3215-3216.	0.7	59
38	Synthesis of novel chiral non-racemic substituted trianglimine and trianglamine macrocycles. Tetrahedron Letters, 2002, 43, 3329-3332.	0.7	58
39	The synthesis and conformation of oxygenated trianglimine macrocycles. Organic and Biomolecular Chemistry, 2005, 3, 524.	1.5	57
40	The inhibition of the mammalian DNA methyltransferase 3a (Dnmt3a) by dietary black tea and coffee polyphenols. BMC Biochemistry, 2011, 12, 16.	4.4	56
41	Investigation of Acyl Migration in Mono- and Dicaffeoylquinic Acids under Aqueous Basic, Aqueous Acidic, and Dry Roasting Conditions. Journal of Agricultural and Food Chemistry, 2014, 62, 9160-9170.	2.4	56
42	Investigating the Chemical Changes of Chlorogenic Acids during Coffee Brewing: Conjugate Addition of Water to the Olefinic Moiety of Chlorogenic Acids and Their Quinides. Journal of Agricultural and Food Chemistry, 2012, 60, 12105-12115.	2.4	55
43	Changes in the fucoxanthin production and protein profiles in Cylindrotheca closterium in response to blue light-emitting diode light. Microbial Cell Factories, 2018, 17, 110.	1.9	53
44	What is under the hump? Mass spectrometry based analysis of complex mixtures in processed food – lessons from the characterisation of black tea thearubigins, coffee melanoidines and caramel. Food and Function, 2013, 4, 1130.	2.1	52
45	Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Research International, 2018, 109, 506-516.	2.9	51
46	Diversity of Kale (Brassica oleraceavar.sabellica): Glucosinolate Content and Phylogenetic Relationships. Journal of Agricultural and Food Chemistry, 2016, 64, 3215-3225.	2.4	49
47	Neuraminidase inhibition of Dietary chlorogenic acids and derivatives – potential antivirals from dietary sources. Food and Function, 2016, 7, 2052-2059.	2.1	48
48	Identification of novel cocoa flavonoids from raw fermented cocoa beans by HPLC–MSn. Food Research International, 2014, 63, 353-359.	2.9	46
49	Origin and varietal based proteomic and peptidomic fingerprinting of Theobroma cacao in non-fermented and fermented cocoa beans. Food Research International, 2018, 111, 137-147.	2.9	45
50	Biological activities of Ficus carica latex for potential therapeutics in Human Papillomavirus (HPV) related cervical cancers. Scientific Reports, 2019, 9, 1013.	1.6	45
51	Tuning the size of macrocyclic cavities in trianglimine macrocycles. Organic and Biomolecular Chemistry, 2005, 3, 1911.	1.5	44
52	Profiling and characterisation by liquid chromatography/multi-stage mass spectrometry of the chlorogenic acids in Gardeniae Fructus. Rapid Communications in Mass Spectrometry, 2010, 24, 3109-3120.	0.7	44
53	Chemistry of Pyrazolinones and their Applications. Current Organic Chemistry, 2012, 16, 373-399.	0.9	43
54	Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters?. Food Research International, 2014, 61, 214-227.	2.9	43

#	Article	IF	CITATIONS
55	Synthesis of chiral nonracemic polyimine macrocycles from cyclocondensation reactions of biaryl and terphenyl aromatic dicarboxaldehydes and 1R,2R-diaminocyclohexane. Tetrahedron Letters, 2005, 46, 7575-7579.	0.7	42
56	Scope and limitations of principal component analysis of high resolution LC-TOF-MS data: the analysis of the chlorogenic acid fraction in green coffee beans as a case study. Analytical Methods, 2011, 3, 144-155.	1.3	42
57	Profiling and Quantification of Phenolics in <i>Stevia rebaudiana</i> Leaves. Journal of Agricultural and Food Chemistry, 2015, 63, 9188-9198.	2.4	42
58	Profiling, quantification and classification of cocoa beans based on chemometric analysis of carbohydrates using hydrophilic interaction liquid chromatography coupled to mass spectrometry. Food Chemistry, 2018, 258, 284-294.	4.2	41
59	LC-MSn identification and characterization of the phenolic compounds from the fruits of Flacourtia indica (Burm. F.) Merr. and Flacourtia inermis Roxb Food Research International, 2014, 62, 388-396.	2.9	40
60	Identification and Characterization of Two New Derivatives of Chlorogenic Acids in Arnica (Arnica) Tj ETQq0 0 0 of Agricultural and Food Chemistry, 2011, 59, 4033-4039.	rgBT /Ove 2.4	rlock 10 Tf 50 39
61	Identification and Characterization of the Phenolic Glycosides of Lagenaria siceraria Stand. (Bottle) Tj ETQq1 1 C Food Chemistry, 2014, 62, 1261-1271.	.784314 r 2.4	gBT /Overloci 39
62	How to distinguish between cinnamoylshikimate esters and chlorogenic acid lactones by liquid chromatography-tandem mass spectrometry. Journal of Mass Spectrometry, 2011, 46, 933-942.	0.7	37
63	Hierarchical Key for the LC–MS ^{<i>n</i>} Identification of All Ten Regio- and Stereoisomers of Caffeoylglucose. Journal of Agricultural and Food Chemistry, 2014, 62, 9252-9265.	2.4	37
64	Identification and characterisation of the phenolics of Ilex glabra L. Gray (Aquifoliaceae) leaves by liquid chromatography tandem mass spectrometry. Phytochemistry, 2014, 106, 141-155.	1.4	35
65	Model system-based mechanistic studies of black tea thearubigin formation. Food Chemistry, 2015, 180, 272-279.	4.2	34
66	UPLC-ESI-Q-TOF-MS/MS Characterization of Phenolics from Crataegus monogyna and Crataegus laevigata (Hawthorn) Leaves, Fruits and their Herbal Derived Drops (Crataegutt Tropfen). Journal of Chemical Biology & Therapeutics, 2016, 01, .	0.4	34
67	Repeated oral administration modulates the pharmacokinetic behavior of the chemopreventive agent phenethyl isothiocyanate in rats. Molecular Nutrition and Food Research, 2010, 54, 426-432.	1.5	33
68	Biochemical fate of vicilin storage protein during fermentation and drying of cocoa beans. Food Research International, 2016, 90, 53-65.	2.9	33
69	Highly diastereoselective synthesis of 1,3-oxazolidines under thermodynamic control using focused microwave irradiation under solvent-free conditions. Green Chemistry, 2001, 3, 68-70.	4.6	32
70	Identification of Novel Homologous Series of Polyhydroxylated Theasinensins and Theanaphthoquinones in the SII Fraction of Black Tea Thearubigins Using ESI/HPLC Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2014, 62, 9848-9859.	2.4	32
71	An Investigation of the Complexity of Maillard Reaction Product Profiles from the Thermal Reaction of Amino Acids with Sucrose Using High Resolution Mass Spectrometry. Foods, 2014, 3, 461-475.	1.9	31

12 Identification, characterization, isolation and activity against Escherichia coli of quince (Cydonia) Tj ETQq0 0 0 rgBT_/Overlock 10 Tf 50 6

#	Article	IF	CITATIONS
73	Comparison and quantification of chlorogenic acids for differentiation of green Robusta and Arabica coffee beans. Food Research International, 2019, 126, 108544.	2.9	31
74	Experimentally modelling cocoa bean fermentation reveals key factors and their influences. Food Chemistry, 2020, 302, 125335.	4.2	31
75	Herbal drugs from Sudan: Traditional uses and phytoconstituents. Pharmacognosy Reviews, 2017, 11, 83.	0.7	31
76	Aseptic artificial fermentation of cocoa beans can be fashioned to replicate the peptide profile of commercial cocoa bean fermentations. Food Research International, 2016, 89, 764-772.	2.9	30
77	Investigation of isomeric flavanol structures in black tea thearubigins using ultraperformance liquid chromatography coupled to hybrid quadrupole/ion mobility/time of flight mass spectrometry. Journal of Mass Spectrometry, 2014, 49, 1086-1095.	0.7	29
78	Investigation of the Photochemical Changes of Chlorogenic Acids Induced by Ultraviolet Light in Model Systems and in Agricultural Practice with <i>Stevia rebaudiana</i> Cultivation as an Example. Journal of Agricultural and Food Chemistry, 2015, 63, 3338-3347.	2.4	27
79	LC-MS/MS based molecular networking approach for the identification of cocoa phenolic metabolites in human urine. Food Research International, 2020, 132, 109119.	2.9	27
80	Raman spectroscopic characterization of different regioisomers of monoacyl and diacyl chlorogenic acid. Vibrational Spectroscopy, 2012, 61, 10-16.	1.2	26
81	Bioactivity in Rhododendron: A Systemic Analysis of Antimicrobial and Cytotoxic Activities and Their Phylogenetic and Phytochemical Origins. Frontiers in Plant Science, 2017, 8, 551.	1.7	25
82	Characterisation of "caramel-type―thermal decomposition products of selected monosaccharides including fructose, mannose, galactose, arabinose and ribose by advanced electrospray ionization mass spectrometry methods. Food and Function, 2013, 4, 1040.	2.1	24
83	Variation of triacylglycerol profiles in unfermented and dried fermented cocoa beans of different origins. Food Research International, 2018, 111, 361-370.	2.9	24
84	Synthesis of diastereomeric trianglamine-β-cyclodextrin-[2]-catenanes. Tetrahedron Letters, 2006, 47, 2985-2988.	0.7	23
85	Analysis of impact of temperature and saltwater on Nannochloropsis salina bio-oil production by ultra high resolution APCI FT-ICR MS. Algal Research, 2015, 9, 227-235.	2.4	23
86	Investigating the Thermal Decomposition of Starch and Cellulose in Model Systems and Toasted Bread Using Domino Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2013, 61, 674-684.	2.4	22
87	Phenolic promiscuity in the cell nucleus – epigallocatechingallate (EGCG) and theaflavin-3,3′-digallate from green and black tea bind to model cell nuclear structures including histone proteins, double stranded DNA and telomeric quadruplex DNA. Food and Function, 2013, 4, 328-337.	2.1	22
88	The application of quasi-enantiomeric trianglamine macrocycles as chiral probes for anion recognition in ion trap ESI mass spectrometry. Tetrahedron: Asymmetry, 2007, 18, 1648-1654.	1.8	21
89	Differentiation of prototropic ions in regioisomeric caffeoyl quinic acids by electrospray ion mobility mass spectrometry. Rapid Communications in Mass Spectrometry, 2015, 29, 675-680.	0.7	21
90	Metabolome Comparison of Bioactive and Inactive <i>Rhododendron</i> Extracts and Identification of an Antibacterial Cannabinoid(s) from <i>Rhododendron collettianum</i> . Phytochemical Analysis, 2017, 28, 454-464.	1.2	21

#	Article	lF	CITATIONS
91	Comparative lipidomic studies of <i>Scenedesmus</i> sp. (Chlorophyceae) and <i>Cylindrotheca closterium</i> (Bacillariophyceae) reveal their differences in lipid production under nitrogen starvation. Journal of Phycology, 2019, 55, 1246-1257.	1.0	21
92	Thermally-induced formation of taste-active 2,5-diketopiperazines from short-chain peptide precursors in cocoa. Food Research International, 2019, 121, 217-228.	2.9	21
93	Development of a novel direct-infusion atmospheric pressure chemical ionization mass spectrometry method for the analysis of heavy hydrocarbons in light shredder waste. Analytical Methods, 2012, 4, 730.	1.3	20
94	MALDI-TOF Mass Spectrometry: Avoidance of Artifacts and Analysis of Caffeine-Precipitated SII Thearubigins from 15 Commercial Black Teas. Journal of Agricultural and Food Chemistry, 2012, 60, 4514-4525.	2.4	20
95	Fourier transform ion cyclotron resonance mass spectrometrical analysis of raw fermented cocoa beans of Cameroon and Ivory Coast origin. Food Research International, 2014, 64, 958-961.	2.9	20
96	Synthesis, Structure, and Tandem Mass Spectrometric Characterization of the Diastereomers of Quinic Acid. Journal of Agricultural and Food Chemistry, 2016, 64, 7298-7306.	2.4	20
97	Characterization of triacylglycerols in unfermented cocoa beans by HPLC-ESI mass spectrometry. Food Chemistry, 2018, 254, 232-240.	4.2	20
98	Discrete, Cationic Palladium(II)â€Oxo Clusters via fâ€Metal Ion Incorporation and their Macrocyclic Hostâ€Guest Interactions with Sulfonatocalixarenes. Angewandte Chemie - International Edition, 2022, 61, .	7.2	20
99	Boron trifluoride–etherate mediated synthesis of 3-desoxyanthocyanidins including a total synthesis of tricetanidin from black tea. Tetrahedron Letters, 2001, 42, 9261-9263.	0.7	19
100	Synthesis of tri-substituted biaryl based trianglimines: formation of C3-symmetrical and non-symmetrical regioisomers. Organic and Biomolecular Chemistry, 2011, 9, 3258.	1.5	19
101	Identification and Characterisation of Phenolics from <i>Ixora coccinea</i> L. (Rubiaceae) by Liquid Chromatography Multi-stage Mass Spectrometry. Phytochemical Analysis, 2014, 25, 567-576.	1.2	19
102	Identification of trimeric and tetrameric flavan-3-ol derivatives in the SII black tea thearubigin fraction of black tea using ESI-tandem and MALDI-TOF mass spectrometry. Food Research International, 2014, 63, 317-327.	2.9	19
103	Synthesis of 3-Chloro-2-formylpyrrole Derivatives. Heterocycles, 2000, 53, 2415.	0.4	18
104	Changes in low molecular weight carbohydrates in kale during development and acclimation to cold temperatures determined by chromatographic techniques coupled to mass spectrometry. Food Research International, 2020, 127, 108727.	2.9	18
105	Classification of Brazilian roasted coffees from different geographical origins and farming practices based on chlorogenic acid profiles. Food Research International, 2020, 134, 109218.	2.9	18
106	Novel Amadori and Heyns compounds derived from short peptides found in dried cocoa beans. Food Research International, 2020, 133, 109164.	2.9	18
107	First diastereoselective synthesis of methyl caffeoyl- and feruloyl-muco-quinates. Organic and Biomolecular Chemistry, 2012, 10, 5266.	1.5	17
108	Pilot-scale production of antibacterial substances by the marine diatom Phaeodactylum tricornutum Bohlin. Algal Research, 2018, 32, 113-120.	2.4	17

#	Article	IF	CITATIONS
109	Synthesis and capsule formation of upper rim substituted tetra-acrylamido calix[4]arenes. Organic and Biomolecular Chemistry, 2005, 3, 2175.	1.5	16
110	High molecular weight nonâ€polar hydrocarbons as pure model substances and in motor oil samples can be ionized without fragmentation by atmospheric pressure chemical ionization mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 2365-2371.	0.7	16
111	Determination of hydroxycinnamic acids present in Rhododendron species. Phytochemistry, 2017, 144, 216-225.	1.4	16
112	Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Research International, 2020, 133, 109122.	2.9	16
113	A systematic study of carboxylic acids in negative ion mode electrospray ionisation mass spectrometry providing a structural model for ion suppression. Rapid Communications in Mass Spectrometry, 2007, 21, 2014-2018.	0.7	15
114	Analysis of minor low molecular weight carbohydrates in cocoa beans by chromatographic techniques coupled to mass spectrometry. Journal of Chromatography A, 2019, 1584, 135-143.	1.8	15
115	Synthesis of14C-labelled sulforaphane. Journal of Labelled Compounds and Radiopharmaceuticals, 2001, 44, 347-354.	0.5	14
116	The synthesis of tetra-acrylamido-calix[4]arene capsulesElectronic supplementary information (ESI) available: FAB MS of 3b; 1H NMR (500 MHz) spectrum of heterodimer; synthesis and characterisation details for 3b. See http://www.rsc.org/suppdata/cc/b3/b304688e/. Chemical Communications, 2003, , 2426.	2.2	14
117	Hundert Jahre Aspirin®. Chemie in Unserer Zeit, 1999, 33, 213-220.	0.1	13
118	Cationic Ruthenium-Sulfine Complexes: Synthesis and Dynamic Behaviour. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2002, 57, 259-274.	0.3	13
119	Synthesis of enantiomerically pure functionalised trianglamine macrocycles by N-acylation and N-alkylation reactions. Tetrahedron Letters, 2006, 47, 6915-6918.	0.7	13
120	Which spectroscopic technique allows the best differentiation of coffee varieties: comparing principal component analysis using data derived from CD-, NMR- and IR-spectroscopies and LC-MS in the analysis of the chlorogenic acid fraction in green coffee beans. Analytical Methods, 2014, 6, 3268.	1.3	13
121	Leaves metabolomic profiling of Musa acuminata accessions using UPLC–QTOF–MS/MS and their antioxidant activity. Journal of Food Measurement and Characterization, 2018, 12, 1093-1106.	1.6	13
122	Heat induced hydrolytic cleavage of the peptide bond in dietary peptides and proteins in food processing. Food Chemistry, 2021, 357, 129621.	4.2	13
123	On the steric acceleration of ene reactions. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 1999-2005.	1.3	12
124	Quantification of microbial uptake of quercetin and its derivatives using an UHPLC-ESI-QTOF mass spectrometry assay. Food and Function, 2016, 7, 4082-4091.	2.1	12
125	Comparison of the polyphenolic profile and antibacterial activity of the leaves, fruits and flowers of Rhododendron ambiguum and Rhododendron cinnabarinum. BMC Research Notes, 2017, 10, 297.	0.6	12
126	Kinetic and Thermodynamic Control in the Synthesis of Tetrahydro-Pyrans and -Furans from 1,4-Diols by Stereospecific Phenylsulfanyl (PhS) Migration: Competition Between exo and endo Transition States and between [1,2] and [1,4]Sulfanyl Participation. Synlett, 1999, 1999, 1211-1214.	1.0	11

#	Article	IF	CITATIONS
127	Hill coefficients of dietary polyphenolic enzyme inhibitiors: can beneficial health effects of dietary polyphenols be explained by allosteric enzyme denaturing?. Journal of Chemical Biology, 2011, 4, 109-116.	2.2	11
128	Characterization of commercial green tea leaves by the analysis of low molecular weight carbohydrates and other quality indicators. Food Chemistry, 2019, 290, 159-167.	4.2	11
129	An investigation into the use of Raman microscopy for the detection of labelled compounds in living human cells. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 493-500.	0.5	10
130	An efficient total synthesis of chrysophanol and the sennoside C aglycon. Tetrahedron Letters, 2005, 46, 7571-7573.	0.7	10
131	Synthesis of upper rim calix[4]arene carcerands. Tetrahedron Letters, 2008, 49, 1274-1276.	0.7	10
132	Monitoring Stepwise Proteolytic Degradation of Peptides by Supramolecular Domino Tandem Assays and Mass Spectrometry for Trypsin and Leucine Aminopeptidase. Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	10
133	Probing the mechanism and dynamic reversibility of trianglimine formation using realâ€time electrospray ionization timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 1070-1080.	0.7	10
134	Tea and coffee time with bacteria – Investigation of uptake of key coffee and tea phenolics by wild type E. coli. Food Research International, 2018, 108, 584-594.	2.9	10
135	Monitoring the changes in low molecular weight carbohydrates in cocoa beans during spontaneous fermentation: A chemometric and kinetic approach. Food Research International, 2020, 128, 108865.	2.9	10
136	Scope and limitation of [1,4]-Sbenzyl participation and debenzylation in the stereochemically controlled synthesis of substituted thiolanes. Tetrahedron Letters, 1998, 39, 1247-1250.	0.7	9
137	Stereochemically controlled synthesis of substituted 1,2-oxathianes. Tetrahedron Letters, 1998, 39, 1251-1254.	0.7	9
138	The use of deep cavity tetraformyl calix[4]arenes in the synthesis of static and dynamic macrocyclic libraries. Tetrahedron Letters, 2005, 46, 2059-2062.	0.7	9
139	On the activation of valerolactam with triflic anhydride: the synthesis of ω-trifluorosulfonamido dipeptides using a transpeptidation reaction under mild conditions. Organic and Biomolecular Chemistry, 2005, 3, 1694.	1.5	9
140	Probing the dynamic reversibility and generation of dynamic combinatorial libraries in the presence of bacterial model oligopeptides as templating guests of tetraâ€carbohydrazide macrocycles using electrospray mass spectrometry. Rapid Communications in Mass Spectrometry, 2012, 26, 2865-2876.	0.7	9
141	Profiling and Quantification of Regioisomeric Caffeoyl Glucoses in Berry Fruits. Journal of Agricultural and Food Chemistry, 2018, 66, 1096-1104.	2.4	9
142	Identification of Products from Thermal Degradation of Tryptophan Containing Pentapeptides: Oxidation and Decarboxylation. Journal of Agricultural and Food Chemistry, 2019, 67, 7448-7454.	2.4	9
143	Scope and limitations of the [1,2]-alkylsulfanyl (SMe, SEt and SCH2Ph) and sulfanyl (SH) migration in the stereospecific synthesis of substituted tetrahydrofurans â€. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 138-143.	1.3	7
144	One Size Does Not Fit All—Bacterial Cell Death by Antibiotics Cannot Be Explained by the Action of Reactive Oxygen Species. Angewandte Chemie - International Edition, 2013, 52, 10946-10948.	7.2	7

#	Article	IF	CITATIONS
145	Assignment of Regio- and Stereochemistry of Natural Products Using Mass Spectrometry Chlorogenic Acids and Derivatives as a Case Study. Studies in Natural Products Chemistry, 2014, 42, 305-339.	0.8	7
146	Investigating time dependent cocoa bean fermentation by ESI-FT-ICR mass spectrometry. Food Research International, 2020, 133, 109209.	2.9	7
147	Cocoa origin classifiability through LC-MS data: A statistical approach for large and long-term datasets. Food Research International, 2021, 140, 109983.	2.9	7
148	Analysis of Chlorogenic Acids and Other Hydroxycinnamates in Food, Plants, and Pharmacokinetic Studies. , 2012, , 461-510.		7
149	LC–MS Characterization and Quantification of Known and Unknown (Poly)phenol Metabolites—Possible Pitfalls and Their Avoidance. Molecular Nutrition and Food Research, 2022, 66, e2101013.	1.5	7
150	[1,4]-SPh Shift Cyclisations or [1,2]-SPh-Cyclisations as Alternative Cascade Sequences for Stereocontrolled Synthesis of Substituted Tetrahydrofurans. Synlett, 1999, 1999, 1215-1218.	1.0	6
151	Energy resolved mass spectrometry of chlorogenic acids and its application to isomer quantification by direct infusion tandem mass spectrometry. Phytochemical Analysis, 2018, 29, 406-412.	1.2	6
152	LC-MS based metabolomic approach for the efficient identification and relative quantification of bioavailable cocoa phenolics in human urine. Food Chemistry, 2021, 364, 130198.	4.2	6
153	A Practitioner's Dilemma Mass Spectrometryâ€Based Annotation and Identification of Human Plasma and Urinary Polyphenol Metabolites. Molecular Nutrition and Food Research, 2022, 66, e2100985.	1.5	6
154	Investigating the interaction between dietary polyphenols, the SARS CoV-2 spike protein and the ACE-2 receptor. Food and Function, 2022, 13, 8038-8046.	2.1	6
155	The scope and limitation of the [1,4]-Sbenzyl participation and debenzylation in the stereochemically controlled synthesis of substituted thiolanes. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 1504-1510.	1.3	5
156	Synthesis of 1, 1′, 2, 2′, 3, 3′, 4, 4′ - octadeutero-sulforaphane. Journal of Labelled Compounds and Radiopharmaceuticals, 2004, 47, 501-507.	0.5	5
157	Synthesis, selfâ€association and chiroselectivity of isotopically labeled trianglamine macrocycles in the ion trap mass spectrometer. Journal of Labelled Compounds and Radiopharmaceuticals, 2007, 50, 1215-1223.	0.5	5
158	Synthesis of novel enantiomerically pure tetra-carbohydrazide cyclophane macrocycles. Organic and Biomolecular Chemistry, 2012, 10, 4381.	1.5	5
159	LC-MS n study of the chemical transformations of hydroxycinnamates during yerba mat $ ilde{A}$ © (llex) Tj ETQq1 1 0.7	843]4 rgl 2.9	3T <u>/</u> Overlock
160	Stereo- and Enantioselective Reactions of Organosulfur Compounds Mediated by Transition Metal Complexes. Phosphorus, Sulfur and Silicon and the Related Elements, 1994, 95, 367-370.	0.8	4
161	Synthesis of novel chiral tetra-(hydrazinecarboxamide) cyclophane macrocycles. Tetrahedron Letters, 2013, 54, 4139-4142.	0.7	4
162	Discrete, Cationic Palladium(II)â€Oxo Clusters viaÂfâ€Metal Ion Incorporation and their Macrocyclic Hostâ€Guest Interactions with Sulfonatocalixarenes. Angewandte Chemie, 0, , .	1.6	4

#	Article	IF	CITATIONS
163	Stereochemically controlled synthesis of substituted 1,2-oxathianes. Journal of the Chemical Society, Perkin Transactions 1, 2002, , 2282-2287.	1.3	3
164	A powerful aqueous solvent effect in an intramolecular Diels–Alder cyclisation. Journal of Chemical Research, 2004, 2004, 608-610.	0.6	3
165	The Design and Synthesis of Acrylato and Imino Derivatives of Calix[4]arene for Applications in Static and Dynamic Combinatorial Libraries. Journal of Chemical Research, 2010, 34, 61-67.	0.6	3
166	HPLC-MS-based design of experiments approach on cocoa roasting. Food Chemistry, 2021, 360, 129694.	4.2	3
167	Profiling and quantification of regioisomeric caffeoyl glucoses in Solanaceae vegetables. Food Chemistry, 2017, 237, 659-666.	4.2	3
168	Cocoa bean fingerprinting via correlation networks. Npj Science of Food, 2022, 6, 5.	2.5	3
169	Funktionelle Lebensmittelâ€eine kritische Betrachtung. Nachrichten Aus Der Chemie, 2002, 50, 142-146.	0.0	2
170	Über die Chemie der Schokoladenherstellung. Nachrichten Aus Der Chemie, 2018, 66, 965-970.	0.0	2
171	On the scope and limitations of the Heck reaction of upper rim tetraiodocalix[4]arenes. Journal of the Chemical Society, Perkin Transactions 1, 2001, , 3393-3398.	1.3	1
172	Synthesis of novel chiral bis-N-substituted-hydrazinecarboxamide receptors and probing their solution-phase recognition to chiral carboxylic guests by ESI-TOF/MS and tandem ESI-MS. Tetrahedron, 2013, 69, 11130-11137.	1.0	1
173	Chemistry and Biology of the Black Tea Thearubigins and of Tea Fermentation. , 2013, , 343-360.		1
174	Polyphenole: Vielseitige Pflanzeninhaltsstoffe. Chemie in Unserer Zeit, 2013, 47, 80-91.	0.1	1
175	Stuart Warren (24 Dec 1938–22 Mar 2020). Organic and Biomolecular Chemistry, 2020, 18, 7236-7237.	1.5	1
176	Review on Cocoa Lipidomics – State of Knowledge and Future Needs. , 2021, , 136-154.		1
177	1282 chemische Bachelor-und Master-StudiengÃ ¤ ge in Großbritannien. Nachrichten Aus Der Chemie, 2000, 48, 1352-1356.	0.0	Ο
178	Kent: Still Teaching and Researching. Nachrichten Aus Der Chemie, 2001, 49, 57-57.	0.0	0
179	On the Steric Acceleration of Ene Reactions ChemInform, 2003, 34, no.	0.1	Ο
180	Stereochemically Controlled Synthesis of Substituted 1,2-Oxathianes ChemInform, 2003, 34, no.	0.1	0

#	Article	IF	CITATIONS
181	The Synthesis of Trianglimines: Scope and Limitations of the [3 + 3] Cyclocondensation Reaction Between (1R,2R)-Diaminocyclohexane and Aromatic Dicarboxaldehydes ChemInform, 2003, 34, no.	0.1	0
182	A Powerful Aqueous Solvent Effect in an Intramolecular Diels?Alder Cyclization ChemInform, 2005, 36, no.	0.1	0
183	The Use of Deep Cavity Tetraformyl Calix[4]arenes in the Synthesis of Static and Dynamic Macrocyclic Libraries ChemInform, 2005, 36, no.	0.1	0
184	Synthesis of Chiral Nonracemic Polyimine Macrocycles from Cyclocondensation Reactions of Biaryl and Terphenyl Aromatic Dicarboxaldehydes and (1R,2R)-Diaminocyclohexane ChemInform, 2006, 37, no.	0.1	0
185	Metabolism of 2-amino-3-methylimidazol [4,5,f]quinoline by precision-cut rat liver slices. Toxicology, 2007, 240, 185.	2.0	0
186	Was unter dem Hügel steckt. Nachrichten Aus Der Chemie, 2011, 59, 866-871.	0.0	0
187	"Thermal Peroxidation―of Dietary Pentapeptides Yields N-Terminal 1,2-Dicarbonyls. Frontiers in Nutrition, 2021, 8, 663233.	1.6	0
188	Synthesis of tetramethoxy-(tetra-hydrazinecarboxamide) cyclophanes with unexpected conformation and investigation of their solution-phase recognition of chiral carboxylic guests using time-of-flight and tandem mass spectrometry. Arkivoc, 2015, 2015, 1-19.	0.3	0
189	The Inhibition of the Mammalian DNA Methyltransferase 3a (Dnmt3a) by Dietary Black Tea and Coffee Polyphenols. , 2015, , 213-231.		0
190	Polyphenols: Contributors to Good Health $\hat{a} \in$ "Part 1. ChemistryViews, 0, , .	0.0	0
191	Polyphenols: Contributors to Good Health – Part 2. ChemistryViews, 0, , .	0.0	0