Avshish Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7985917/publications.pdf

Version: 2024-02-01

567281 713466 58 637 15 21 citations h-index g-index papers 60 60 60 643 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Ultrafast, trace-level detection of NH3 gas at room temperature using hexagonal-shaped ZnO nanoparticles grown by novel green synthesis technique. Physica B: Condensed Matter, 2022, 626, 413595.	2.7	12
2	Ultrafast trace-level detection of methyl nicotinate biomarker using TiO2/SiNWs nanocomposite-based sensing platform. Journal of Materials Science: Materials in Electronics, 2022, 33, 3411-3423.	2.2	5
3	Ultrasensitive detection of formaldehyde at room temperature using Si-chip assisted MOS/SiNWs nanocomposite based sensor. Journal of Alloys and Compounds, 2022, 919, 165840.	5.5	5
4	Silicon nanowires/reduced graphene oxide nanocomposite based novel sensor platform for detection of cyclohexane and formaldehyde. Materials Science in Semiconductor Processing, 2021, 123, 105571.	4.0	26
5	Influence of silver doping on the structure, optical and photocatalytic properties of Ag-doped BaTiO3 ceramics. Materials Chemistry and Physics, 2021, 259, 124058.	4.0	26
6	Highly sensitive MWCNTs/SiNWs hybrid nanostructured sensor fabricated on silicon-chip for alcohol vapors detection. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 127, 114538.	2.7	6
7	BaTiO3@rGO nanocomposite: enhanced photocatalytic activity as well as improved electrode performance. Journal of Materials Science: Materials in Electronics, 2021, 32, 12911-12921.	2.2	21
8	Effect of shape and size of carbon materials on the thermophysical properties of magnesium nitrate hexahydrate for solar thermal energy storage applications. Journal of Energy Storage, 2021, 41, 102899.	8.1	13
9	Recent Advances on Enhanced Thermal Conduction in Phase Change Materials using Carbon Nanomaterials. Journal of Energy Storage, 2021, 43, 103173.	8.1	28
10	Cadmium Sulfide (CdS) Thin Films with Improved Morphology for Humidity Sensing by Chemical Bath Deposition at Lower pH. Journal of Nanoscience and Nanotechnology, 2021, 21, 6035-6040.	0.9	4
11	Carbon Nanotube Alignment Techniques and Their Sensing Applications. Advances in Sustainability Science and Technology, 2021, , 307-348.	0.6	O
12	Enhanced thermophysical properties ofÂMetal oxide nanoparticles embedded magnesium nitrate hexahydrateÂbased nanocomposite for thermal energy storage applications. Journal of Energy Storage, 2020, 32, 101773.	8.1	40
13	Zinc oxide nanoflowers synthesized by sol-gel technique for field emission displays (FEDs). Materials Today: Proceedings, 2020, 32, 402-406.	1.8	11
14	Metal nanoparticles enhanced thermophysical properties of phase change material for thermal energy storage. Materials Today: Proceedings, 2020, 32, 463-467.	1.8	17
15	Hydrothermally synthesized zinc oxide nanoparticles for reflectance study onto Si surface. Materials Today: Proceedings, 2020, 32, 287-293.	1.8	4
16	Fabrication of SiNWs/Graphene nanocomposite for IR sensing. Materials Today: Proceedings, 2020, 32, 397-401.	1.8	2
17	Thin film field effect transistors: Charge transport study in zinc quinolate complexes. Materials Today: Proceedings, 2020, 32, 301-303.	1.8	1
18	Investigation of Heat Transfer Characteristics of Al2O3-Embedded Magnesium Nitrate Hexahydrate-Based Nanocomposites for Thermal Energy Storage. Springer Proceedings in Energy, 2020, , 17-26.	0.3	4

#	Article	IF	CITATIONS
19	Synthesis of ZnO Nanostructures Using RTCVD, Suitable for Various Applications. Springer Proceedings in Energy, 2020, , 191-198.	0.3	0
20	Improved Thermal Conductivity and Energy Storage Properties of Graphitized Carbon Black Based Magnesium Nitrate Hexahydrate Composite. Springer Proceedings in Physics, 2020, , 1-9.	0.2	0
21	Enhanced working efficiency of Si solar cell by water induced nano-porous thermal cooling layer. Materials Research Express, 2019, 6, 095053.	1.6	1
22	Structural effect of SWCNTs grown by PECVD towards NH3 gas sensing and field emission properties. Materials Research Bulletin, 2019, 119, 110532.	5.2	12
23	Synthesis and characterization of SWCNTs/ZnO hybrid nanocomposite for sensor applications. Materials Research Express, 2019, 6, 1050c5.	1.6	5
24	Synthesis of nanosized Cu2O decorated single-walled carbon nanotubes and their superior catalytic activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123933.	4.7	14
25	Fabrication of sensitive SWCNT sensor for trace level detection of reducing and oxidizing gases (NH3) Tj ETQq1 1 206-214.	0.784314 2.7	ł rgBT /Over 10
26	Enhancement of sensor response of as fabricated SWCNT sensor with gold decorated nanoparticles. Sensors and Actuators A: Physical, 2018, 274, 85-93.	4.1	13
27	Plasma enhanced chemical vapour deposition growth and physical properties of single-walled carbon nanotubes. Materials Letters, 2018, 219, 269-272.	2.6	15
28	Multiwall carbon nanotubes/polyaniline: Polyâ€mâ€toulidine: Polyâ€oâ€toulidine nanocompositesâ€"Synthesis, properties & amp; field emission. Polymer Composites, 2018, 39, E955.	4.6	4
29	Synthesis of highly dense and vertically aligned array of SWCNTs using a catalyst barrier layer: High performance field emitters for devices. Physica B: Condensed Matter, 2018, 550, 15-20.	2.7	10
30	Carbon based Nanomaterials: Synthesis and Applications (A Review). Indian Journal of Industrial and Applied Mathematics, 2018, 9, 133.	0.1	0
31	Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD. Applied Surface Science, 2017, 402, 161-167.	6.1	29
32	Risk factors for vertical transmission of hepatitis E virus infection. Journal of Viral Hepatitis, 2017, 24, 1067-1075.	2.0	48
33	Oxygen and nitrogen doping in single wall carbon nanotubes: An efficient stable field emitter. Journal of Alloys and Compounds, 2017, 711, 85-93.	5.5	15
34	Fowler Nordheim theory of carbon nanotube based field emitters. Physica B: Condensed Matter, 2017, 505, 1-8.	2.7	26
35	Growth of single wall carbon nanotubes using PECVD technique: An efficient chemiresistor gas sensor. Physica E: Low-Dimensional Systems and Nanostructures, 2017, 87, 261-265.	2.7	16
36	Growth of Carbon Nanotubes by PECVD and its Applications: A Review. Current Nanoscience, 2017, 13, .	1.2	8

#	Article	IF	CITATIONS
37	Decoration of zinc oxide nanoparticles on vertically aligned single wall carbon nanotubes: An efficient field emitter. Materials Research Bulletin, 2016, 83, 12-18.	5.2	18
38	Advances in Nanomaterials. Advanced Structured Materials, 2016, , .	0.5	5
39	Introduction to Nanomaterials. Advanced Structured Materials, 2016, , 1-23.	0.5	13
40	Improved field emission properties of carbon nanotubes by dual layer deposition. Journal of Experimental Nanoscience, 2015, 10, 499-510.	2.4	8
41	Selective Growth of Single Wall Carbon Nanotubes Uniformly Grown by Plasma Enhanced Chemical Vapour Deposition System. Advanced Science Letters, 2015, 21, 2887-2890.	0.2	1
42	Synthesis and Characterization of Multi-Layer Graphene Using Low Pressure Chemical Vapor Deposition Method. Advanced Science Letters, 2015, 21, 2940-2942.	0.2	0
43	Enhancement of Field Emission Properties of Carbon Nanotubes by ECR-Plasma Treatment. Journal of Nanoscience, 2014, 2014, 1-5.	2.6	5
44	A comparative study of nitrogen plasma effect on field emission characteristics of single wall carbon nanotubes synthesized by plasma enhanced chemical vapor deposition. Applied Surface Science, 2014, 322, 236-241.	6.1	15
45	Effect of oxygen plasma on field emission characteristics of single-wall carbon nanotubes grown by plasma enhanced chemical vapour deposition system. Journal of Applied Physics, 2014, 115, 084308.	2.5	18
46	Study of Forster's Resonance Energy Transfer Between MWCNT and Phenoxazone 660. Environmental Science and Engineering, 2014, , 521-522.	0.2	0
47	Effect of parametric variation on the performance of single wall carbon nanotube based field effect transistor. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 64, 178-182.	2.7	7
48	Field-Emission Study of Carbon Nanotubes Grown by Low Pressure Chemical Vapour Deposition on Single and Dual Layer of Catalyst. Environmental Science and Engineering, 2014, , 527-529.	0.2	2
49	Raman Characteristics of Vertically Aligned Single Wall Carbon Nanotubes Grown by Plasma Enhanced Chemical Vapor Deposition System. Environmental Science and Engineering, 2014, , 563-564.	0.2	1
50	Field emission of MWCNTs/PANi nanocomposites prepared by <i>exâ€situ</i> and <i>inâ€situ</i> polymerization methods. Polymer Composites, 2013, 34, 1298-1305.	4.6	11
51	Enhanced Field Emission Properties of Carbon Nanotube Based Field Emitters by Dynamic Oxidation. Current Nanoscience, 2013, 9, 619-623.	1.2	5
52	Improving the field emission of carbon nanotubes by lanthanum-hexaboride nano-particles decoration. Applied Physics Letters, 2012, 101, .	3.3	26
53	Field Emission Study of Carbon Nanotubes Forest and Array Grown on Si Using Fe as Catalyst Deposited by Electro-Chemical Method. Journal of Nanoscience and Nanotechnology, 2012, 12, 2829-2832.	0.9	18
54	Study of J-E Curve with Hysteresis of Carbon Nanotubes Field Emitters. ISRN Nanomaterials, 2012, 2012, 1-5.	0.7	4

#	Article	IF	CITATIONS
55	Characterization and Field Emission Studies of Uniformly Distributed Multi-Walled Carbon Nanotubes (MWCNTs) Film Grown by Low-pressure Chemical Vapour Deposition (LPCVD). Current Nanoscience, 2011, 7, 333-336.	1.2	10
56	Estimation of Effective Emitting Area of Carbon Nanotubes Based Field Emitters. Nanoscience and Nanotechnology Letters, 2011, 3, 794-797.	0.4	9
57	Effect of Catalyst-Deposition Methods on the Alignment of Carbon Nanotubes Grown by Low Pressure Chemical Vapor Deposition. Nanoscience and Nanotechnology Letters, 2011, 3, 175-178.	0.4	9
58	Trace level electrochemical analysis of arsenite in human serum utilising rGO/AuNPs based sensor platform. International Journal of Environmental Analytical Chemistry, 0, , 1-15.	3.3	1