Zhiguo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7985889/publications.pdf

Version: 2024-02-01

116194 97045 5,413 106 36 71 citations h-index g-index papers 113 113 113 5966 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	è¶…å¾®å"碳å¸é™"å‰,实现å®ç"¶æ°"ä¸ä¸™çf∙和乙çf∙çš"é«~选櫩性æå⊷. Science China Materials,	202 3, 66,	31 9-326.
2	Porous Hydrogen-Bonded Frameworks Assembled from Metal-Nucleobase Entities for Xe/Kr Separation. CCS Chemistry, 2022, 4, 381-388.	4.6	22
3	Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie - International Edition, 2022, 61, .	7.2	36
4	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie, 2022, 134, .	1.6	3
5	Shellâ€like Xenon Nanoâ€Traps within Angular Anionâ€Pillared Layered Porous Materials for Boosting Xe/Kr Separation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	34
6	Titelbild: Hydrogenâ€Bonded Metal–Nucleobase Frameworks for Efficient Separation of Xenon and Krypton (Angew. Chem. 11/2022). Angewandte Chemie, 2022, 134, .	1.6	2
7	Shapeâ€size sieving of <i>trans</i> ―and <scp><i>cis</i>â€piperylene</scp> isomers with <scp>gallateâ€based metalâ€organic</scp> frameworks. AICHE Journal, 2022, 68, .	1.8	1
8	Carbon dioxide capture in gallate-based metal-organic frameworks. Separation and Purification Technology, 2022, 292, 121031.	3.9	23
9	Highly efficient and anti-poisoning single-atom cobalt catalyst for selective hydrogenation of nitroarenes. Nano Research, 2022, 15, 10006-10013.	5.8	7
10	Separation of perfluorinated electron specialty gases on microporous carbon adsorbents with record selectivity. Separation and Purification Technology, 2022, 292, 121059.	3.9	25
11	Hydrogen-bonded metal-nucleobase frameworks for highly selective capture of ethane/propane from methane and methane/nitrogen separation. Nano Research, 2022, 15, 7695-7702.	5.8	15
12	Double-Accessible Open Metal Sites in Metal–Organic Frameworks with Suitable Pore Size for Efficient Xe/Kr Separation. Industrial & Engineering Chemistry Research, 2022, 61, 7361-7369.	1.8	12
13	Cooperative control of intralayer and interlayer space in MOFs enables selective capture of intermediate-sized molecules. Cell Reports Physical Science, 2022, 3, 100903.	2.8	2
14	Molecular Sieving of Propylene from Propane in Metal–Organic Framework-Derived Ultramicroporous Carbon Adsorbents. ACS Applied Materials & Samp; Interfaces, 2022, 14, 30443-30453.	4.0	18
15	Tunable Confined Aliphatic Pore Environment in Robust Metal–Organic Frameworks for Efficient Separation of Gases with a Similar Structure. Journal of the American Chemical Society, 2022, 144, 14322-14329.	6.6	56
16	Discrimination of xylene isomers in a stacked coordination polymer. Science, 2022, 377, 335-339.	6.0	94
17	Shaping of gallate-based metal-organic frameworks for adsorption separation of ethylene from acetylene and ethane. Journal of Colloid and Interface Science, 2021, 581, 177-184.	5.0	18
18	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie, 2021, 133, 2461-2468.	1.6	11

#	Article	IF	CITATIONS
19	CoNi Alloy Nanoparticles Embedded in Metal–Organic Frameworkâ€Derived Carbon for the Highly Efficient Separation of Xenon and Krypton via a Chargeâ€Transfer Effect. Angewandte Chemie - International Edition, 2021, 60, 2431-2438.	7.2	53
20	Progress in the Enantioseparation of \hat{l}^2 -Blockers by Chromatographic Methods. Molecules, 2021, 26, 468.	1.7	9
21	A robust ethane-trapping metal-organic framework for efficient purification of ethylene. Science China Chemistry, 2021, 64, 666-672.	4.2	16
22	Cooperative Interplay of Brønsted Acid and Lewis Acid Sites in MIL-101(Cr) for Cross-Dehydrogenative Coupling of C–H Bonds. ACS Applied Materials & Enterfaces, 2021, 13, 10845-10854.	4.0	14
23	Heterogeneous synthesis of tetrahydroquinoline derivatives via cascade Povarov reaction catalyzed by sulfonic acid functionalized metalâ€organic frameworks. Nano Select, 2021, 2, 1968.	1.9	1
24	Deep Desulfurization with Record SO ₂ Adsorption on the Metal–Organic Frameworks. Journal of the American Chemical Society, 2021, 143, 9040-9047.	6.6	108
25	A pore-engineered metal-organic framework with mixed ligands enabling highly efficient separation of hexane isomers for gasoline upgrading. Separation and Purification Technology, 2021, 268, 118646.	3.9	23
26	Turnâ€On Photocatalysis: Creating Loneâ€Pair Donor–Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. Advanced Science, 2021, 8, e2100631.	5.6	24
27	Tandem synthesis of tetrahydroquinolines and identification of the reaction network by <i>operando</i> NMR. Catalysis Science and Technology, 2021, 11, 4332-4341.	2.1	1
28	Crystal Structure Transformation in Hydrogenâ€bonded Organic Frameworks via Ion Exchange. Chemistry - an Asian Journal, 2021, 16, 3978-3984.	1.7	10
29	Microporous Carbon Adsorbents Prepared by Activating Reagent-Free Pyrolysis for Upgrading Low-Quality Natural Gas. ACS Sustainable Chemistry and Engineering, 2020, 8, 977-985.	3.2	23
30	The Future of Biomass Utilization Technologies Special Issue Editorial. Industrial & Engineering Chemistry Research, 2020, 59, 16895-16898.	1.8	7
31	Simultaneous interlayer and intralayer space control in two-dimensional metalâ^'organic frameworks for acetylene/ethylene separation. Nature Communications, 2020, 11, 6259.	5.8	85
32	Deciphering a Reaction Network for the Switchable Production of Tetrahydroquinoline or Quinoline with MOF-Supported Pd Tandem Catalysts. ACS Catalysis, 2020, 10, 5707-5714.	5 . 5	29
33	Calcium-Based Metal–Organic Framework for Simultaneous Capture of Trace Propyne and Propadiene from Propylene. ACS Applied Materials & Interfaces, 2020, 12, 17147-17154.	4.0	34
34	Supramolecular Metal–Organic Framework for CO ₂ /CH ₄ and CO ₂ /N ₂ Separation. Industrial & Engineering Chemistry Research, 2020, 59, 7866-7874.	1.8	42
35	Gallate-Based Metal–Organic Frameworks for Highly Efficient Removal of Trace Propyne from Propylene. Industrial & Engineering Chemistry Research, 2020, 59, 13716-13723.	1.8	13
36	Adsorptive Separation of Geometric Isomers of 2-Butene on Gallate-Based Metal–Organic Frameworks. ACS Applied Materials & Camp; Interfaces, 2020, 12, 9609-9616.	4.0	38

#	Article	IF	Citations
37	Facile Fabrication of Hierarchical MOF–Metal Nanoparticle Tandem Catalysts for the Synthesis of Bioactive Molecules. ACS Applied Materials & Interfaces, 2020, 12, 23002-23009.	4.0	27
38	Engineering the Pore Size of Pillared-Layer Coordination Polymers Enables Highly Efficient Adsorption Separation of Acetylene from Ethylene. ACS Applied Materials & Interfaces, 2019, 11, 28197-28204.	4.0	71
39	M-Gallate (M = Ni, Co) Metal–Organic Framework-Derived Ni/C and Bimetallic Ni–Co/C Catalysts for Lignin Conversion into Monophenols. ACS Sustainable Chemistry and Engineering, 2019, 7, 12955-12963.	3.2	69
40	Adsorptive Separation of Acetylene from Ethylene in Isostructural Gallateâ€Based Metal–Organic Frameworks. Chemistry - A European Journal, 2019, 25, 15516-15524.	1.7	27
41	EGFR TKIs impair lysosome-dependent degradation of SQSTM1 to compromise the effectiveness in lung cancer. Signal Transduction and Targeted Therapy, 2019, 4, 25.	7.1	23
42	Visible-light-mediated direct access to \hat{l}_{\pm} -ketoamides by dealkylative amidation of tertiary amines with benzoylformic acids. Tetrahedron Letters, 2019, 60, 151191.	0.7	8
43	Allylic oxidation of olefins with a manganese-based metal–organic framework. Green Chemistry, 2019, 21, 3629-3636.	4.6	22
44	A Robust Squarate-Based Metal–Organic Framework Demonstrates Record-High Affinity and Selectivity for Xenon over Krypton. Journal of the American Chemical Society, 2019, 141, 9358-9364.	6.6	162
45	New catalytic effect of thiourea on the oxidative cyanation of N-aryltetrahydroisoquinolines. Tetrahedron Letters, 2019, 60, 348-351.	0.7	8
46	Room-Temperature Tandem Condensation-Hydrogenation Catalyzed by Porous C3N4 Nanosheet-Supported Pd Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 3356-3363.	3.2	15
47	Inverse Adsorption Separation of CO ₂ /C ₂ H ₂ Mixture in Cyclodextrin-Based Metal–Organic Frameworks. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2543-2550.	4.0	134
48	Organocatalyzed cross-dehydrogenative coupling for C(sp3)–O bonds formation: a rapid access to α-aminoxyl isochromans. Catalysis Letters, 2019, 149, 574-579.	1.4	7
49	A calcium-based microporous metal-organic framework for efficient adsorption separation of light hydrocarbons. Chemical Engineering Journal, 2019, 358, 446-455.	6.6	75
50	MIL-101(Cr)-SO ₃ H Catalyzed Transfer Hydrogenation of 2-Substituted Quinoline Derivatives. Chinese Journal of Organic Chemistry, 2019, 39, 1681.	0.6	4
51	Gas Separation: A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials (Adv. Mater. 10/2018). Advanced Materials, 2018, 30, 1870068.	11.1	3
52	Metal nanoparticles in ionic liquidâ€cosolvent biphasic systems as active catalysts for acetylene hydrochlorination. AICHE Journal, 2018, 64, 2536-2544.	1.8	18
53	A Singleâ€Molecule Propyne Trap: Highly Efficient Removal of Propyne from Propylene with Anionâ€Pillared Ultramicroporous Materials. Advanced Materials, 2018, 30, 1705374.	11.1	133
54	Performance Comparison of Metal–Organic Framework Extrudates and Commercial Zeolite for Ethylene/Ethane Separation. Industrial & Engineering Chemistry Research, 2018, 57, 1645-1654.	1.8	45

#	Article	IF	Citations
55	Fine Tuning and Specific Binding Sites with a Porous Hydrogen-Bonded Metal-Complex Framework for Gas Selective Separations. Journal of the American Chemical Society, 2018, 140, 4596-4603.	6.6	181
56	Highly efficient separation of strongly hydrophilic structurally related compounds by hydrophobic ionic solutions. AICHE Journal, 2018, 64, 1373-1382.	1.8	6
57	Pd-Ni nanoparticles supported on titanium oxide as effective catalysts for Suzuki-Miyaura coupling reactions. Frontiers of Chemical Science and Engineering, 2018, 12, 24-31.	2.3	23
58	MIL-101(Cr) as a synergistic catalyst for the reduction of imines with trichlorosilane. Molecular Catalysis, 2018, 445, 163-169.	1.0	18
59	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie, 2018, 130, 16252-16257.	1.6	72
60	Molecular Sieving of Ethane from Ethylene through the Molecular Crossâ€Section Size Differentiation in Gallateâ€based Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2018, 57, 16020-16025.	7.2	202
61	Determination and correlation of the solubility of L-arabinose and D-galactose in binary solvent mixtures from 278.15 to 333.15 K. Korean Journal of Chemical Engineering, 2018, 35, 2043-2051.	1.2	3
62	A thermostable anion-pillared metal-organic framework for C2H2/C2H4 and C2H2/CO2 separations. Chemical Engineering Journal, 2018, 352, 803-810.	6.6	85
63	Highly efficient separation of methane from nitrogen on a squarateâ€based metalâ€organic framework. AICHE Journal, 2018, 64, 3681-3689.	1.8	94
64	Visible-Light-Mediated Dealkylative Coupling of Trialkylamines with Dialkyl Acetylenedicarboxylates. Synlett, 2017, 28, 1116-1120.	1.0	6
65	Functionalized Metal–Organic Framework as a Biomimetic Heterogeneous Catalyst for Transfer Hydrogenation of Imines. ACS Applied Materials & Interfaces, 2017, 9, 9772-9777.	4.0	37
66	1-Ethyl-3-methylimidazolium acetate as a highly efficient organocatalyst for cyanosilylation of carbonyl compounds with trimethylsilyl cyanide. Scientific Reports, 2017, 7, 42699.	1.6	16
67	Cyclopentadiene-based Brønsted acid as a new generation of organocatalyst for transfer hydrogenation of 2-substituted quinoline derivatives. Tetrahedron Letters, 2017, 58, 2050-2053.	0.7	16
68	Fabrication of plasmonic Au–Pd alloy nanoparticles for photocatalytic Suzuki–Miyaura reactions under ambient conditions. Nanoscale, 2017, 9, 6026-6032.	2.8	70
69	Mechanistic studies of thiourea-catalyzed cross-dehydrogenative C-P and C-C coupling reactions and their further applications. Tetrahedron, 2017, 73, 3118-3124.	1.0	17
70	Organocatalytic Approach for Transfer Hydrogenation of Quinolines, Benzoxazines and Benzothiazines. Catalysis Letters, 2017, 147, 1673-1678.	1.4	8
71	Efficient oxidative N -dealkylative addition of trialkylamines to dimethyl acetylenedicarboxylate using BrCCl 3 as the terminal oxidant. Tetrahedron Letters, 2017, 58, 2707-2710.	0.7	6
72	Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials. Advanced Materials, 2017, 29, 1606929.	11.1	183

#	Article	IF	Citations
73	Long-Chain Carboxylate Ionic Liquids Combining High Solubility and Low Viscosity for Light Hydrocarbon Separations. Industrial & Engineering Chemistry Research, 2017, 56, 7336-7344.	1.8	25
74	Synthesis of anion-functionalized mesoporous poly(ionic liquid)s via a microphase separation-hypercrosslinking strategy: highly efficient adsorbents for bioactive molecules. Journal of Materials Chemistry A, 2017, 5, 14114-14123.	5.2	54
75	Efficient Synthesis of Cyclic Carbonates from Atmospheric CO ₂ Using a Positive Charge Delocalized Ionic Liquid Catalyst. ACS Sustainable Chemistry and Engineering, 2017, 5, 2841-2846.	3.2	116
76	Gas Purification: Ultrahigh and Selective SO ₂ Uptake in Inorganic Anionâ€Pillared Hybrid Porous Materials (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	3
77	Efficient adsorption separation of acetylene and ethylene via supported ionic liquid on metalâ€organic framework. AICHE Journal, 2017, 63, 2165-2175.	1.8	62
78	Catalytic dehydration of glucose to 5â€hydroxymethylfurfural with a bifunctional metalâ€organic framework. AICHE Journal, 2016, 62, 4403-4417.	1.8	104
79	CO ₂ -Assisted Back-Extraction Method for Ionic Liquid Biphasic Systems. ACS Sustainable Chemistry and Engineering, 2016, 4, 4403-4410.	3.2	2
80	New Insights into CO2 Absorption Mechanisms with Amino-Acid Ionic Liquids. ChemSusChem, 2016, 9, 765-765.	3.6	0
81	Thioureaâ€Catalyzed Crossâ€Dehydrogenative Coupling of C(sp ³)–H with Diethyl Phosphite. European Journal of Organic Chemistry, 2016, 2016, 3939-3942.	1.2	18
82	New Insights into CO ₂ Absorption Mechanisms with Aminoâ€Acid Ionic Liquids. ChemSusChem, 2016, 9, 806-812.	3.6	77
83	Separation of highly unsaturated fatty acid methyl esters from model bio-oils with ionic liquid-cosolvent as extractants. RSC Advances, 2016, 6, 60709-60716.	1.7	7
84	Adsorption separation of raffinose from sucrose by activated carbon: Equilibrium, kinetics and dynamic breakthrough. Separation Science and Technology, 2016, 51, 1636-1644.	1.3	2
85	Efficient removal of both basic and non-basic nitrogen compounds from fuels by deep eutectic solvents. Green Chemistry, 2016, 18, 157-164.	4.6	96
86	Nonaqueous Lyotropic Ionic Liquid Crystals: Preparation, Characterization, and Application in Extraction. Chemistry - A European Journal, 2015, 21, 9150-9156.	1.7	29
87	Immobilization of Ag(<scp>i</scp>) into a metal–organic framework with –SO ₃ H sites for highly selective olefin–paraffin separation at room temperature. Chemical Communications, 2015, 51, 2859-2862.	2.2	160
88	Long-Chain Fatty Acid-Based Phosphonium Ionic Liquids with Strong Hydrogen-Bond Basicity and Good Lipophilicity: Synthesis, Characterization, and Application in Extraction. ACS Sustainable Chemistry and Engineering, 2015, 3, 309-316.	3.2	73
89	Adsorption behavior of î±-tocopheryl succinate and î±-tocopheryl polyethylene glycol succinate onto weakly basic anion exchange resins. Korean Journal of Chemical Engineering, 2015, 32, 511-520.	1.2	1
90	Self-assembly induced solubilization of drug-like molecules in nanostructured ionic liquids. Chemical Communications, 2015, 51, 13170-13173.	2.2	37

#	Article	IF	Citations
91	Hyperbranched polyethylene-supported <scp>l</scp> -proline: a highly selective and recyclable organocatalyst for asymmetric aldol reactions. Catalysis Science and Technology, 2015, 5, 3798-3805.	2.1	16
92	Confining Noble Metal (Pd, Au, Pt) Nanoparticles in Surfactant Ionic Liquids: Active Non-Mercury Catalysts for Hydrochlorination of Acetylene. ACS Catalysis, 2015, 5, 6724-6731.	5.5	94
93	Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 2015, 5, 79355-79360.	1.7	65
94	Selective separation of zwitterionic phospholipid homologues with functional ionic liquids as extractants. RSC Advances, 2015, 5, 77581-77588.	1.7	8
95	A general method for the separation of amphiphilic surface-active poly(ethylene glycol) mono- and di-esters with long-chain ionic liquid-based biphasic systems. Green Chemistry, 2014, 16, 102-107.	4.6	8
96	N,N′-Bis[3,5-bis(trifluoromethyl)phenyl]thiourea: a privileged motif for catalyst development. Organic and Biomolecular Chemistry, 2014, 12, 3151-3162.	1.5	73
97	Fabrication of cuprous nanoparticles in MIL-101: an efficient adsorbent for the separation of olefin–paraffin mixtures. RSC Advances, 2014, 4, 20230-20233.	1.7	79
98	Thiourea as an efficient organocatalyst for the transfer hydrogenation of 2-substituted quinoline derivatives. RSC Advances, 2014, 4, 42566-42568.	1.7	17
99	Adsorption of 2-Butyl-2-ethyl-1,3-propanediol from Aqueous Solutions on Activated Carbon: Salt-Out Effect on Equilibrium, Kinetics, and Dynamics. Industrial & Engineering Chemistry Research, 2014, 53, 8592-8598.	1.8	9
100	(Thio)urea Organocatalyst Equilibrium Acidities in DMSO. Organic Letters, 2012, 14, 1724-1727.	2.4	226
101	Cooperative Thiourea–Brønsted Acid Organocatalysis: Enantioselective Cyanosilylation of Aldehydes with TMSCN. Journal of Organic Chemistry, 2011, 76, 9764-9776.	1.7	103
102	Asymmetric Transfer Hydrogenation of Ketimines with Trichlorosilane: Structural Studies. Synthesis, 2009, 2009, 1531-1544.	1.2	6
103	(Thio)urea organocatalysis—What can be learnt from anion recognition?. Chemical Society Reviews, 2009, 38, 1187.	18.7	998
104	Organocatalytic Biomimetic Reduction of Conjugated Nitroalkenes. Synthesis, 2007, 2007, 2559-2564.	1.2	9
105	Thiourea-Catalyzed Transfer Hydrogenation of Aldimines. Synlett, 2007, 2007, 1455-1457.	1.0	13
106	Hydrogenâ€Bonded Metalâ€Nucleobase Frameworks for Efficient Separation of Xenon and Krypton. Angewandte Chemie, 0, , .	1.6	4