TÃ, nia Pereira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7985759/publications.pdf

Version: 2024-02-01

567144 434063 1,136 58 15 31 citations h-index g-index papers 66 66 66 1910 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Lung Segmentation in CT Images: A Residual U-Net Approach on a Cross-Cohort Dataset. Applied Sciences (Switzerland), 2022, 12, 1959.	1.3	11
2	Towards Machine Learning-Aided Lung Cancer Clinical Routines: Approaches and Open Challenges. Journal of Personalized Medicine, 2022, 12, 480.	1.1	19
3	Multiple instance learning for lung pathophysiological findings detection using CT scans. Medical and Biological Engineering and Computing, 2022, 60, 1569-1584.	1.6	4
4	Differential Gene Expression Analysis ofÂtheÂMost Relevant Genes forÂLung Cancer Prediction andÂSub-type Classification. Lecture Notes in Computer Science, 2022, , 182-191.	1.0	0
5	The Influence of a Coherent Annotation and Synthetic Addition of Lung Nodules for Lung Segmentation in CT Scans. Sensors, 2022, 22, 3443.	2.1	1
6	<i>EGFR</i> Assessment in Lung Cancer CT Images: Analysis of Local and Holistic Regions of Interest Using Deep Unsupervised Transfer Learning. IEEE Access, 2021, 9, 58667-58676.	2.6	24
7	The Role of Liquid Biopsy in Early Diagnosis of Lung Cancer. Frontiers in Oncology, 2021, 11, 634316.	1.3	50
8	Machine Learning and Feature Selection Methods for EGFR Mutation Status Prediction in Lung Cancer. Applied Sciences (Switzerland), 2021, 11, 3273.	1.3	21
9	Sharing Biomedical Data: Strengthening Al Development in Healthcare. Healthcare (Switzerland), 2021, 9, 827.	1.0	8
10	Explainability Metrics of Deep Convolutional Networks for Photoplethysmography Quality Assessment. IEEE Access, 2021, 9, 29736-29745.	2.6	15
11	Comprehensive Perspective for Lung Cancer Characterisation Based on Al Solutions Using CT Images. Journal of Clinical Medicine, 2021, 10, 118.	1.0	14
12	An Interpretable Approach for Lung Cancer Prediction and Subtype Classification using Gene Expression., 2021, 2021, 1707-1710.		7
13	Ensemble Strategies for EGFR Mutation Status Prediction in Lung Cancer. , 2021, 2021, 3285-3288.		2
14	Stacking Approach for Lung Cancer EGFR Mutation Status Prediction from CT Scans., 2021,,.		0
15	A Supervised Approach to Robust Photoplethysmography Quality Assessment. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 649-657.	3.9	51
16	THE ROLE OF RADIOGENOMICS IN EGFR AND KRAS MUTATION STATUS PREDICTION AMONG NON-SMALL CELL LUNG CANCER PATIENTS. Chest, 2020, 157, A16.	0.4	0
17	Pre-Training Autoencoder for Lung Nodule Malignancy Assessment Using CT Images. Applied Sciences (Switzerland), 2020, 10, 7837.	1.3	10
18	Identifying relationships between imaging phenotypes and lung cancer-related mutation status: EGFR and KRAS. Scientific Reports, 2020, 10, 3625.	1.6	41

#	Article	IF	Citations
19	Photoplethysmography based atrial fibrillation detection: a review. Npj Digital Medicine, 2020, 3, 3.	5.7	155
20	Non-invasive imaging techniques and assessment of carotid vasa vasorum neovascularization: Promises and pitfalls. Trends in Cardiovascular Medicine, 2019, 29, 71-80.	2.3	8
21	Deep learning approaches for plethysmography signal quality assessment in the presence of atrial fibrillation. Physiological Measurement, 2019, 40, 125002.	1.2	28
22	Quantitative Operating Principles of Yeast Metabolism during Adaptation to Heat Stress. Cell Reports, 2018, 22, 2421-2430.	2.9	19
23	Supervised learning methods for pathological arterial pulse wave differentiation: A SVM and neural networks approach. International Journal of Medical Informatics, 2018, 109, 30-38.	1.6	31
24	Automatic Methods for Carotid Contrast-Enhanced Ultrasound Imaging Quantification of Adventitial Vasa Vasorum. Ultrasound in Medicine and Biology, 2018, 44, 2780-2792.	0.7	2
25	Validation of a low intrusiveness heart rate sensor for stress assessment. Biomedical Physics and Engineering Express, 2017, 3, 017004.	0.6	1
26	Heart rate variability metrics for fine-grained stress level assessment. Computer Methods and Programs in Biomedicine, 2017, 148, 71-80.	2.6	95
27	The population genomics of archaeological transition in west Iberia: Investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genetics, 2017, 13, e1006852.	1.5	122
28	Normal range and lateral symmetry in the skin temperature profile of pregnant women. Infrared Physics and Technology, 2016, 78, 84-91.	1.3	2
29	Which wavelength is the best for arterial pulse waveform extraction using laser speckle imaging?. Biomedical Signal Processing and Control, 2016, 25, 188-195.	3.5	11
30	An automatic method for arterial pulse waveform recognition using KNN and SVM classifiers. Medical and Biological Engineering and Computing, 2016, 54, 1049-1059.	1.6	18
31	Novel Methods for Pulse Wave Velocity Measurement. Journal of Medical and Biological Engineering, 2015, 35, 555-565.	1.0	207
32	Correlation study between blood pressure and pulse transit time. , 2015, , .		4
33	Arterial pulse pressure waveform monitoring by novel optical probe. International Journal of Cardiology, 2015, 179, 95-96.	0.8	2
34	Submicron Surface Vibration Profiling Using Doppler Self-Mixing Techniques. Advances in Optics, 2014, 2014, 1-7.	0.3	1
35	Use of laser speckle and entropy computation to segment images of diffuse objects with longitudinal motion. , 2014, , .		0
36	Pine Decay Assessment by Means of Electrical Impedance Spectroscopy. Communications in Computer and Information Science, 2014, , 54-73.	0.4	0

#	Article	IF	Citations
37	P2.11 ASSESSMENT OF CAROTID DISTENTION WAVEFORM AND LOCAL PULSE WAVE VELOCITY DETERMINATION BY A NOVEL OPTICAL SYSTEM. Artery Research, 2014, 8, 135.	0.3	1
38	P8.4 NON-INVASIVE ASSESSMENT OF LOCAL PULSE WAVE VELOCITY USING ELECTROMECHANICAL SENSORS: FEASIBILITY STUDY IN A HEALTHY POPULATION. Artery Research, 2014, 8, 152.	0.3	0
39	Pulse pressure waveform estimation using distension profiling with contactless optical probe. Medical Engineering and Physics, 2014, 36, 1515-1520.	0.8	10
40	Cardiovascular risk analysis by means of pulse morphology and clustering methodologies. Computer Methods and Programs in Biomedicine, 2014, 117, 257-266.	2.6	7
41	Reproducibility of Pulse Wave Analysis and Pulse Wave Velocity in Healthy Subjects. , 2014, , .		O
42	Clinical Test for Validation of a New Optical Probe for Hemodynamic Parameters Assessment. Communications in Computer and Information Science, 2014, , 269-283.	0.4	0
43	Characterization of Optical System for Hemodynamic Multi-Parameter Assessment. Cardiovascular Engineering and Technology, 2013, 4, 87-97.	0.7	11
44	The effect of water and sodium hypochlorite disinfection on alginate impressions. Revista Portuguesa De Estomatologia, Medicina Dentaria E Cirurgia Maxilofacial, 2013, 54, 8-12.	0.1	16
45	Comparison of Low-Cost and Noninvasive Optical Sensors for Cardiovascular Monitoring. IEEE Sensors Journal, 2013, 13, 1434-1441.	2.4	4
46	Empirical mode decomposition for self-mixing Doppler signals of hemodynamic optical probes. Physiological Measurement, 2013, 34, 377-390.	1,2	8
47	New optical probe approach using mixing effect in planar photodiode for biomedical applications. , 2013, , .		0
48	Machine Learning Techniques for Arterial Pressure Waveform Analysis. Journal of Personalized Medicine, 2013, 3, 82-101.	1.1	15
49	Validation of a waveform delineator device for cardiac studies: Repeatability and data mining analysis. , 2012, , .		1
50	A cardiac signal monitoring and processing system. , 2011, , .		0
51	Piezoelectric probe for pressure waveform estimation in flexible tubes and its application to the cardiovascular system. Sensors and Actuators A: Physical, 2011, 169, 217-226.	2.0	21
52	Visible and infrared optical probes for hemodynamic parameters assessment., 2011,,.		5
53	New instrumentation for cardiovascular risk assessment: The role of pulse wave velocity. , $2011, \ldots$		0
54	Signal Analysis in a New Optical Pulse Waveform Profiler for Cardiovascular Applications., 2011,,.		7

TÃ, NIA PEREIRA

#	Article	lF	CITATION
55	Characterization of a double probe for local pulse wave velocity assessment. Physiological Measurement, 2010, 31, 1449-1465.	1.2	15
56	A Statistical Comparative Study of Photoplethysmographic Signals in Wrist-Worn and Fingertip Pulse-Oximetry Devices., 0, , .		3
57	Robust Assessment of Photoplethysmogram Signal Quality in the Presence of Atrial Fibrillation., 0,,.		5
58	Learning Models for Traumatic Brain Injury Mortality Prediction on Pediatric Electronic Health Records. Frontiers in Neurology, 0, 13, .	1.1	6