Scott P France

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984983/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Approaches to the New Drugs Approved During 2020. Journal of Medicinal Chemistry, 2022, 65, 9607-9661.	2.9	18
2	PF-07059013: A Noncovalent Modulator of Hemoglobin for Treatment of Sickle Cell Disease. Journal of Medicinal Chemistry, 2021, 64, 326-342.	2.9	29
3	Scalable, Telescoped Hydrogenolysis–Enzymatic Decarboxylation Process for the Asymmetric Synthesis of (<i>R</i>)-α-Heteroaryl Propionic Acids. Organic Process Research and Development, 2021, 25, 421-426.	1.3	9
4	Synthetic Approaches to the New Drugs Approved during 2019. Journal of Medicinal Chemistry, 2021, 64, 3604-3657.	2.9	30
5	Biocatalysis. Nature Reviews Methods Primers, 2021, 1, .	11.8	255
6	Carboxylic acid reductases (CARs): An industrial perspective. Journal of Biotechnology, 2019, 304, 78-88.	1.9	38
7	One-Pot Biocatalytic Cascade Reduction of Cyclic Enimines for the Preparation of Diastereomerically Enriched <i>N</i> -Heterocycles. Journal of the American Chemical Society, 2019, 141, 19208-19213.	6.6	43
8	Identification of Novel Bacterial Members of the Imine Reductase Enzyme Family that Perform Reductive Amination. ChemCatChem, 2018, 10, 510-514.	1.8	86
9	Kinetic Resolution and Deracemization of Racemic Amines Using a Reductive Aminase. ChemCatChem, 2018, 10, 515-519.	1.8	42
10	A Mechanism for Reductive Amination Catalyzed by Fungal Reductive Aminases. ACS Catalysis, 2018, 8, 11534-11541.	5.5	78
11	Imine Reductases, Reductive Aminases, and Amine Oxidases for the Synthesis of Chiral Amines: Discovery, Characterization, and Synthetic Applications. Methods in Enzymology, 2018, 608, 131-149.	0.4	25
12	Synthesis of 2,5â€Ðisubstituted Pyrrolidine Alkaloids <i>via</i> A Oneâ€Pot Cascade Using Transaminase and Reductive Aminase Biocatalysts. ChemCatChem, 2018, 10, 4733-4738.	1.8	31
13	A reductive aminase from Aspergillus oryzae. Nature Chemistry, 2017, 9, 961-969.	6.6	290
14	Enzyme Cascades in Whole Cells for the Synthesis of Chiral Cyclic Amines. ACS Catalysis, 2017, 7, 2920-2925.	5.5	75
15	Imine reductases (IREDs). Current Opinion in Chemical Biology, 2017, 37, 19-25.	2.8	202
16	Constructing Biocatalytic Cascades: In Vitro and in Vivo Approaches to de Novo Multi-Enzyme Pathways. ACS Catalysis, 2017, 7, 710-724.	5.5	322
17	Biocatalytic Routes to Enantiomerically Enriched Dibenz[<i>c</i> , <i>e</i>]azepines. Angewandte Chemie - International Edition, 2017, 56, 15589-15593.	7.2	62
18	Biocatalytic Routes to Enantiomerically Enriched Dibenz[<i>c</i> , <i>e</i>]azepines. Angewandte Chemie, 2017, 129, 15795-15799.	1.6	12

#	Article	IF	CITATIONS
19	One-Pot Cascade Synthesis of Mono- and Disubstituted Piperidines and Pyrrolidines using Carboxylic Acid Reductase (CAR), ï‰-Transaminase (ï‰-TA), and Imine Reductase (IRED) Biocatalysts. ACS Catalysis, 2016, 6, 3753-3759.	5.5	171
20	Stereoselectivity and Structural Characterization of an Imine Reductase (IRED) from <i>Amycolatopsis orientalis</i> . ACS Catalysis, 2016, 6, 3880-3889.	5.5	96
21	An (<i>R</i>)â€Imine Reductase Biocatalyst for the Asymmetric Reduction of Cyclic Imines. ChemCatChem, 2015, 7, 579-583.	1.8	126
22	Inducing achiral aliphatic oligoureas to fold into helical conformations. Chemical Communications, 2014, 50, 15006-15009.	2.2	19