Silvia Ribback

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984586/publications.pdf

Version: 2024-02-01

42 papers

1,723 citations

304743 22 h-index 289244 40 g-index

46 all docs

46 docs citations

times ranked

46

2663 citing authors

#	Article	IF	CITATIONS
1	Activation of \hat{I}^2 -Catenin and Yap1 in Human Hepatoblastoma and Induction of Hepatocarcinogenesis in Mice. Gastroenterology, 2014, 147, 690-701.	1.3	249
2	A functional mammalian target of rapamycin complex 1 signaling is indispensable for câ€Mycâ€driven hepatocarcinogenesis. Hepatology, 2017, 66, 167-181.	7.3	119
3	Inactivation of fatty acid synthase impairs hepatocarcinogenesis driven by AKT in mice and humans. Journal of Hepatology, 2016, 64, 333-341.	3.7	115
4	Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Scientific Reports, 2016, 6, 20484.	3.3	100
5	Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by \hat{l}^2 -Catenin Mutations. Cell Metabolism, 2019, 29, 1135-1150.e6.	16.2	92
6	Differential requirement for de novo lipogenesis in cholangiocarcinoma and hepatocellular carcinoma of mice and humans. Hepatology, 2016, 63, 1900-1913.	7.3	82
7	Pan-mTOR inhibitor MLN0128 is effective against intrahepatic cholangiocarcinoma in mice. Journal of Hepatology, 2017, 67, 1194-1203.	3.7	77
8	The mTORC2â€Akt1 Cascade Is Crucial for câ€Myc to Promote Hepatocarcinogenesis in Mice and Humans. Hepatology, 2019, 70, 1600-1613.	7.3	70
9	Both <i>de novo</i> synthetized and exogenous fatty acids support the growth of hepatocellular carcinoma cells. Liver International, 2017, 37, 80-89.	3.9	60
10	Combined CDK4/6 and Pan-mTOR Inhibition Is Synergistic Against Intrahepatic Cholangiocarcinoma. Clinical Cancer Research, 2019, 25, 403-413.	7.0	56
11	V-AKT murine thymoma viral oncogene homolog/mammalian target of rapamycin activation induces a module of metabolic changes contributing to growth in insulin-induced hepatocarcinogenesis. Hepatology, 2012, 55, 1473-1484.	7.3	50
12	Oncogene dependent requirement of fatty acid synthase in hepatocellular carcinoma. Cell Cycle, 2017, 16, 499-507.	2.6	45
13	Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. Journal of Hepatology, 2021, 75, 888-899.	3.7	45
14	Loss of Fbxw7 synergizes with activated Akt signaling to promote c-Myc dependent cholangiocarcinogenesis. Journal of Hepatology, 2019, 71, 742-752.	3.7	44
15	PI3K/AKT/mTOR pathway plays a major pathogenetic role in glycogen accumulation and tumor development in renal distal tubules of rats and men. Oncotarget, 2015, 6, 13036-13048.	1.8	42
16	Loss of Pten synergizes with c-Met to promote hepatocellular carcinoma development via mTORC2 pathway. Experimental and Molecular Medicine, 2018, 50, e417-e417.	7.7	39
17	Crenigacestat, a selective NOTCH1 inhibitor, reduces intrahepatic cholangiocarcinoma progression by blocking VEGFA/DLL4/MMP13 axis. Cell Death and Differentiation, 2020, 27, 2330-2343.	11.2	39
18	Hippo Cascade Controls Lineage Commitment of Liver Tumors in Mice and Humans. American Journal of Pathology, 2018, 188, 995-1006.	3.8	29

#	Article	IF	CITATIONS
19	TAZ is indispensable for c-MYC-induced hepatocarcinogenesis. Journal of Hepatology, 2022, 76, 123-134.	3.7	28
20	Molecular and metabolic changes in human liver clear cell foci resemble the alterations occurring in rat hepatocarcinogenesis. Journal of Hepatology, 2013, 58, 1147-1156.	3.7	26
21	Activated mutant forms of <scp>PIK</scp> 3 <scp>CA</scp> cooperate with RasV12 or câ€Met to induce liver tumour formation in mice via <scp>AKT</scp> 2/ <scp>mTORC</scp> 1 cascade. Liver International, 2016, 36, 1176-1186.	3.9	26
22	Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget, 2017, 8, 73433-73447.	1.8	26
23	TEA Domain Transcription Factor 4 Is the Major Mediator of Yes-Associated Protein Oncogenic Activity in Mouse and Human Hepatoblastoma. American Journal of Pathology, 2019, 189, 1077-1090.	3.8	25
24	Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model. Cell Death and Disease, 2018, 9, 31.	6.3	23
25	Microvascular and lymphovascular tumour invasion are associated with poor prognosis and metastatic spread in renal cell carcinoma: a validation study in clinical practice. BJU International, 2018, 121, 84-92.	2.5	22
26	Overexpression of Mothers Against Decapentaplegic Homolog 7 Activates the Yesâ€Associated Protein/NOTCH Cascade and Promotes Liver Carcinogenesis in Mice and Humans. Hepatology, 2021, 74, 248-263.	7.3	22
27	Clear cell hepatocellular carcinoma: origin, metabolic traits and fate of glycogenotic clear and ground glass cells. Hepatobiliary and Pancreatic Diseases International, 2017, 16, 570-594.	1.3	21
28	Distinct and Overlapping Roles of Hippo Effectors YAP and TAZ During Human and Mouse Hepatocarcinogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 1095-1117.	4.5	21
29	Pivotal Role of Fatty Acid Synthase in c-MYC Driven Hepatocarcinogenesis. International Journal of Molecular Sciences, 2020, 21, 8467.	4.1	20
30	Functional role of SGK3 in PI3K/Pten driven liver tumor development. BMC Cancer, 2019, 19, 343.	2.6	17
31	Oncogene-dependent addiction to carbohydrate-responsive element binding protein in hepatocellular carcinoma. Cell Cycle, 2018, 17, 1496-1512.	2.6	14
32	Î ² -Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology, 2022, 163, 481-494.	1.3	13
33	SNAI1 Promotes the Cholangiocellular Phenotype, but not Epithelial–Mesenchymal Transition, in a Murine Hepatocellular Carcinoma Model. Cancer Research, 2019, 79, 5563-5574.	0.9	12
34	YAP Accelerates Notch-Driven Cholangiocarcinogenesis via mTORC1 in Mice. American Journal of Pathology, 2021, 191, 1651-1667.	3.8	12
35	The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. Journal of Experimental and Clinical Cancer Research, 2022, 41, .	8.6	10
36	Hepatocellular glycogenotic foci after combined intraportal pancreatic islet transplantation and knockout of the carbohydrate responsive element binding protein in diabetic mice. Oncotarget, 2017, 8, 104315-104329.	1.8	7

3

#	Article	IF	CITATIONS
37	CD90 is regulated by notch1 and hallmarks a more aggressive intrahepatic cholangiocarcinoma phenotype. Journal of Experimental and Clinical Cancer Research, 2022, 41, 65.	8.6	7
38	Fascin1 empowers YAP mechanotransduction and promotes cholangiocarcinoma development. Communications Biology, 2021, 4, 763.	4.4	6
39	Tetraspanin 5 (TSPAN5), a Novel Gatekeeper of the Tumor Suppressor DLC1 and Myocardin-Related Transcription Factors (MRTFs), Controls HCC Growth and Senescence. Cancers, 2021, 13, 5373.	3.7	6
40	Nodular hemangiomatosis of pleura and peritoneum. Pathology Research and Practice, 2011, 207, 718-721.	2.3	3
41	Hormonally Induced Hepatocellular Carcinoma in Diabetic Wild Type and Carbohydrate Responsive Element Binding Protein Knockout Mice. Cells, 2021, 10, 2787.	4.1	1
42	A novel preclinical model of cholangiocarcinoma based on human aberrant FBXW7 expression Journal of Clinical Oncology, 2019, 37, e15624-e15624.	1.6	0