Saber Amin Yavari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7984024/publications.pdf

Version: 2024-02-01

43 papers

4,160 citations

147801 31 h-index 265206 42 g-index

45 all docs

45 docs citations

45 times ranked 3982 citing authors

#	Article	IF	CITATIONS
1	Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Materials & Design, 2013, 49, 957-965.	5.1	346
2	Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 34, 106-115.	3.1	340
3	Relationship between unit cell type and porosity and the fatigue behavior of selective laser melted meta-biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 43, 91-100.	3.1	316
4	Additively manufactured porous tantalum implants. Acta Biomaterialia, 2015, 14, 217-225.	8.3	309
5	Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties. Materials, 2015, 8, 1871-1896.	2.9	285
6	Fatigue behavior of porous biomaterials manufactured using selective laser melting. Materials Science and Engineering C, 2013, 33, 4849-4858.	7. 3	275
7	Bone regeneration performance of surface-treated porous titanium. Biomaterials, 2014, 35, 6172-6181.	11.4	257
8	Selective laser meltingâ€produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. Journal of Orthopaedic Research, 2013, 31, 792-799.	2.3	225
9	Antibacterial and immunogenic behavior of silver coatings on additively manufactured porous titanium. Acta Biomaterialia, 2018, 81, 315-327.	8.3	130
10	Revival of pure titanium for dynamically loaded porous implants using additive manufacturing. Materials Science and Engineering C, 2015, 54, 94-100.	7. 3	126
11	Antibacterial Behavior of Additively Manufactured Porous Titanium with Nanotubular Surfaces Releasing Silver Ions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17080-17089.	8.0	125
12	Combating Implant Infections: Shifting Focus from Bacteria to Host. Advanced Materials, 2020, 32, e2002962.	21.0	119
13	Effects of bio-functionalizing surface treatments on the mechanical behavior of open porous titanium biomaterials. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 36, 109-119.	3.1	101
14	Enhanced Bone Regeneration of Cortical Segmental Bone Defects Using Porous Titanium Scaffolds Incorporated with Colloidal Gelatin Gels for Time- and Dose-Controlled Delivery of Dual Growth Factors. Tissue Engineering - Part A, 2013, 19, 2605-2614.	3.1	89
15	Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous Biomaterials to Fully Eradicate Planktonic and Adherent <i>Staphylococcus aureus</i> ACS Applied Materials & Staphylococcus aureus	8.0	82
16	Additively Manufactured and Surface Biofunctionalized Porous Nitinol. ACS Applied Materials & Interfaces, 2017, 9, 1293-1304.	8.0	78
17	Crystal structure and nanotopographical features on the surface of heat-treated and anodized porous titanium biomaterials produced using selective laser melting. Applied Surface Science, 2014, 290, 287-294.	6.1	72
18	Full regeneration of segmental bone defects using porous titanium implants loaded with BMP-2 containing fibrin gels., 2015, 29, 141-154.		71

#	Article	IF	Citations
19	Experimental validation of finite element model for proximal composite femur using optical measurements. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21, 86-94.	3.1	69
20	Electrophoretic deposition: a versatile tool against biomaterial associated infections. Journal of Materials Chemistry B, 2018, 6, 1128-1148.	5.8	59
21	Bactericidal coating to prevent early and delayed implant-related infections. Journal of Controlled Release, 2020, 326, 38-52.	9.9	54
22	Biofunctional surfaces by plasma electrolytic oxidation on titanium biomedical alloys. Surface Engineering, 2016, 32, 411-417.	2.2	45
23	Effects of anodizing parameters and heat treatment on nanotopographical features, bioactivity, and cell culture response of additively manufactured porous titanium. Materials Science and Engineering C, 2015, 51, 132-138.	7.3	43
24	Direct covalent attachment of silver nanoparticles on radical-rich plasma polymer films for antibacterial applications. Journal of Materials Chemistry B, 2018, 6, 5845-5853.	5.8	40
25	Fatigue crack propagation in additively manufactured porous biomaterials. Materials Science and Engineering C, 2017, 76, 457-463.	7.3	38
26	Repeatability of digital image correlation for measurement of surface strains in composite long bones. Journal of Biomechanics, 2013, 46, 1928-1932.	2.1	37
27	Full-Field Strain Measurement During Mechanical Testing of the Human Femur at Physiologically Relevant Strain Rates. Journal of Biomechanical Engineering, 2014, 136, .	1.3	37
28	Radical-functionalized plasma polymers: Stable biomimetic interfaces for bone implant applications. Applied Materials Today, 2019, 16, 456-473.	4.3	37
29	Layer by layer coating for bio-functionalization of additively manufactured meta-biomaterials. Additive Manufacturing, 2020, 32, 100991.	3.0	36
30	<i>In-silico</i> quest for bactericidal but non-cytotoxic nanopatterns. Nanotechnology, 2018, 29, 43LT02.	2.6	35
31	A multifaceted biomimetic interface to improve the longevity of orthopedic implants. Acta Biomaterialia, 2020, 110, 266-279.	8.3	34
32	Osteostatin-Coated Porous Titanium Can Improve Early Bone Regeneration of Cortical Bone Defects in Rats. Tissue Engineering - Part A, 2015, 21, 1495-1506.	3.1	32
33	Mechanical analysis of a rodent segmental bone defect model: The effects of internal fixation and implant stiffness on load transfer. Journal of Biomechanics, 2014, 47, 2700-2708.	2.1	30
34	Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability. Materials, 2015, 8, 1612-1625.	2.9	30
35	Fatigue and quasiâ€static mechanical behavior of bioâ€degradable porous biomaterials based on magnesium alloys. Journal of Biomedical Materials Research - Part A, 2018, 106, 1798-1811.	4.0	26
36	Full-field strain measurement and fracture analysis of rat femora in compression test. Journal of Biomechanics, 2013, 46, 1282-1292.	2.1	24

#	Article	IF	CITATIONS
37	Toward Antibacterial Coatings for Personalized Implants. ACS Biomaterials Science and Engineering, 2020, 6, 5486-5492.	5.2	24
38	Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors. Bioactive Materials, 2022, 11, 107-117.	15.6	24
39	Incorporation of F-MWCNTs into electrospun nanofibers regulates osteogenesis through stiffness and nanotopography. Materials Science and Engineering C, 2020, 106, 110163.	7.3	21
40	A multifunctional silk coating on additively manufactured porous titanium to prevent implant-associated infection and stimulate bone regeneration. Biomedical Materials (Bristol), 2020, 15, 065016.	3.3	20
41	Bone Regeneration in Critical-Sized Bone Defects Treated with Additively Manufactured Porous Metallic Biomaterials: The Effects of Inelastic Mechanical Properties. Materials, 2020, 13, 1992.	2.9	14
42	Data on a rat infection model to assess porous titanium implant coatings. Data in Brief, 2018, 21, 1642-1648.	1.0	4
43	MEASUREMENT OF SURFACE STRAIN DISTRIBUTION IN COMPOSITE FEMORA USING DIGITAL IMAGE CORRELATION. Journal of Biomechanics, 2012, 45, S540.	2.1	1