James L Kirkland

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7983487/james-l-kirkland-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

106 15,675 118 51 h-index g-index citations papers 118 6.91 21,030 9.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
106	Senescence in obesity: causes and consequences 2022 , 289-308		O
105	Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach <i>Journal of Acquired Immune Deficiency Syndromes (1999)</i> , 2022 , 89, S34-S46	3.1	1
104	Orally-active, clinically-translatable senolytics restore EKlotho in mice and humans <i>EBioMedicine</i> , 2022 , 103912	8.8	1
103	Targeted clearance of p21- but not p16-positive senescent cells prevents radiation-induced osteoporosis and increased marrow adiposity <i>Aging Cell</i> , 2022 , e13602	9.9	3
102	Palmitate induces DNA damage and senescence in human adipocytes in vitro that can be alleviated by oleic acid but not inorganic nitrate <i>Experimental Gerontology</i> , 2022 , 163, 111798	4.5	1
101	Selective Vulnerability of Senescent Glioblastoma Cells to Bcl-XL Inhibition <i>Molecular Cancer Research</i> , 2022 ,	6.6	4
100	Obesity, Senescence, and Senolytics. <i>Handbook of Experimental Pharmacology</i> , 2021 , 1	3.2	1
99	The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. <i>Nature Metabolism</i> , 2021 ,	14.6	14
98	Role of senescence in the chronic health consequences of COVID-19. <i>Translational Research</i> , 2021 ,	11	3
97	Targeting p21 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. <i>Cell Metabolism</i> , 2021 ,	24.6	6
96	Antidiabetic Effects of the Senolytic Agent Dasatinib. <i>Mayo Clinic Proceedings</i> , 2021 , 96, 3021-3029	6.4	1
95	Strategies for Targeting Senescent Cells in Human Disease. <i>Nature Aging</i> , 2021 , 1, 870-879		19
94	An inducible -Cre mouse model to monitor and manipulate -highly-expressing senescent cells <i>Nature Aging</i> , 2021 , 1, 962-973		9
93	Strategies for late phase preclinical and early clinical trials of senolytics. <i>Mechanisms of Ageing and Development</i> , 2021 , 200, 111591	5.6	3
92	Senolytics: Potential for Alleviating Diabetes and Its Complications. <i>Endocrinology</i> , 2021 , 162,	4.8	9
91	Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. <i>Journal of the National Cancer Institute</i> , 2021 , 113, 1285-1298	9.7	35
90	Diabetic Kidney Disease Alters the Transcriptome and Function of Human Adipose-Derived Mesenchymal Stromal Cells but Maintains Immunomodulatory and Paracrine Activities Important for Renal Repair. <i>Diabetes</i> , 2021 , 70, 1561-1574	0.9	5

(2020-2021)

89	KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype. <i>Nature Aging</i> , 2021 , 1, 454-472		4
88	Senescent cells in human adipose tissue: A cross-sectional study. <i>Obesity</i> , 2021 , 29, 1320-1327	8	5
87	Senolytics reduce coronavirus-related mortality in old mice. <i>Science</i> , 2021 , 373,	33.3	60
86	Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. <i>Journal of the National Cancer Institute</i> , 2021 , 113, 112-122	9.7	18
85	New Horizons: Novel Approaches to Enhance Healthspan Through Targeting Cellular Senescence and Related Aging Mechanisms. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2021 , 106, e1481-e14	8 76	21
84	Mechanisms of vascular dysfunction in the interleukin-10-deficient murine model of preeclampsia indicate nitric oxide dysregulation. <i>Kidney International</i> , 2021 , 99, 646-656	9.9	3
83	Senolytic Drugs: Reducing Senescent Cell Viability to Extend Health Span. <i>Annual Review of Pharmacology and Toxicology</i> , 2021 , 61, 779-803	17.9	52
82	Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. <i>Aging Cell</i> , 2021 , 20, e13296	9.9	47
81	Epigenetic and senescence markers indicate an accelerated ageing-like state in women with preeclamptic pregnancies. <i>EBioMedicine</i> , 2021 , 70, 103536	8.8	5
80	Fisetin for COVID-19 in skilled nursing facilities: Senolytic trials in the COVID era. <i>Journal of the American Geriatrics Society</i> , 2021 , 69, 3023-3033	5.6	9
79	Impact of Senescent Cell Subtypes on Tissue Dysfunction and Repair: Importance and Research Questions. <i>Mechanisms of Ageing and Development</i> , 2021 , 198, 111548	5.6	5
78	Frailty in CKD and Transplantation. <i>Kidney International Reports</i> , 2021 , 6, 2270-2280	4.1	5
77	SARS-CoV-2 causes senescence in human cells and exacerbates the senescence-associated secretory phenotype through TLR-3. <i>Aging</i> , 2021 , 13, 21838-21854	5.6	4
76	Partial inhibition of mitochondrial complex I ameliorates Alzheimer's disease pathology and cognition in APP/PS1 female mice. <i>Communications Biology</i> , 2021 , 4, 61	6.7	11
75	The role of cellular senescence in ageing and endocrine disease. <i>Nature Reviews Endocrinology</i> , 2020 , 16, 263-275	15.2	133
74	Transplanted senescent renal scattered tubular-like cells induce injury in the mouse kidney. <i>American Journal of Physiology - Renal Physiology</i> , 2020 , 318, F1167-F1176	4.3	15
73	Discovery, development, and future application of senolytics: theories and predictions. <i>FEBS Journal</i> , 2020 , 287, 2418-2427	5.7	49
72	Transplanting cells from old but not young donors causes physical dysfunction in older recipients. <i>Aging Cell</i> , 2020 , 19, e13106	9.9	24

71	Targeted Reduction of Senescent Cell Burden Alleviates Focal Radiotherapy-Related Bone Loss. Journal of Bone and Mineral Research, 2020 , 35, 1119-1131	6.3	40
70	Targeting Senescent Cells for a Healthier Aging: Challenges and Opportunities. <i>Advanced Science</i> , 2020 , 7, 2002611	13.6	19
69	Bridging the geroscience chasm between bench and bedside. <i>Gerontology and Geriatrics Education</i> , 2020 , 1-7	1.2	
68	CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD and NMN levels. <i>Nature Metabolism</i> , 2020 , 2, 1284-1304	14.6	52
67	Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. <i>Cancers</i> , 2020 , 12,	6.6	46
66	Senolytics prevent mt-DNA-induced inflammation and promote the survival of aged organs following transplantation. <i>Nature Communications</i> , 2020 , 11, 4289	17.4	55
65	Reducing Senescent Cell Burden in Aging and Disease. <i>Trends in Molecular Medicine</i> , 2020 , 26, 630-638	11.5	47
64	Human Obesity Induces Dysfunction and Early Senescence in Adipose Tissue-Derived Mesenchymal Stromal/Stem Cells. <i>Frontiers in Cell and Developmental Biology</i> , 2020 , 8, 197	5.7	36
63	Cellular senescence: at the nexus between ageing and diabetes. <i>Diabetologia</i> , 2019 , 62, 1835-1841	10.3	77
62	Targeting senescence improves angiogenic potential of adipose-derived mesenchymal stem cells in patients with preeclampsia. <i>Biology of Sex Differences</i> , 2019 , 10, 49	9.3	28
61	Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of Dasatinib plus Quercetin in individuals with diabetic kidney disease. <i>EBioMedicine</i> , 2019 , 47, 446-456	8.8	356
60	Therapeutic Approaches to Aging-Reply. <i>JAMA - Journal of the American Medical Association</i> , 2019 , 321, 901-902	27.4	4
59	Independent Roles of Estrogen Deficiency and Cellular Senescence in the Pathogenesis of Osteoporosis: Evidence in Young Adult Mice and Older Humans. <i>Journal of Bone and Mineral Research</i> , 2019 , 34, 1407-1418	6.3	35
58	Targeting senescent cells alleviates obesity-induced metabolic dysfunction. <i>Aging Cell</i> , 2019 , 18, e1295	0 9.9	218
57	Aged-senescent cells contribute to impaired heart regeneration. <i>Aging Cell</i> , 2019 , 18, e12931	9.9	112
56	The NADase CD38 is induced by factors secreted from senescent cells providing a potential link between senescence and age-related cellular NAD decline. <i>Biochemical and Biophysical Research Communications</i> , 2019 , 513, 486-493	3.4	59
55	Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. <i>EMBO Journal</i> , 2019 , 38,	13	159
54	Increased renal cellular senescence in murine high-fat diet: effect of the senolytic drug quercetin. Translational Research, 2019, 213, 112-123	11	48

53	Creating the Next Generation of Translational Geroscientists. <i>Journal of the American Geriatrics Society</i> , 2019 , 67, 1934-1939	5.6	7
52	Senescence marker activin A is increased in human diabetic kidney disease: association with kidney function and potential implications for therapy. <i>BMJ Open Diabetes Research and Care</i> , 2019 , 7, e000720) ^{4.5}	23
51	Sarcopenia: Aging-Related Loss of Muscle Mass and Function. <i>Physiological Reviews</i> , 2019 , 99, 427-511	47.9	357
50	Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. <i>Cell Metabolism</i> , 2019 , 29, 1061-1077.e8	24.6	161
49	Senolytics in idiopathic pulmonary fibrosis: Results from a first-in-human, open-label, pilot study. <i>EBioMedicine</i> , 2019 , 40, 554-563	8.8	425
48	Hyperoxia-induced Cellular Senescence in Fetal Airway Smooth Muscle Cells. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2019 , 61, 51-60	5.7	37
47	Inhibiting Cellular Senescence: A New Therapeutic Paradigm for Age-Related Osteoporosis. <i>Journal of Clinical Endocrinology and Metabolism</i> , 2018 , 103, 1282-1290	5.6	70
46	Cellular Senescence Biomarker p16INK4a+ Cell Burden in Thigh Adipose is Associated With Poor Physical Function in Older Women. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2018 , 73, 939-945	6.4	70
45	The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. <i>American Journal of Physiology - Renal Physiology</i> , 2018 , 315, F1493-F1499	4.3	19
44	Senolytics improve physical function and increase lifespan in old age. <i>Nature Medicine</i> , 2018 , 24, 1246-1	256 .5	776
43	Targeting senescent cholangiocytes and activated fibroblasts with B-cell lymphoma-extra large inhibitors ameliorates fibrosis in multidrug resistance 2 gene knockout (Mdr2) mice. <i>Hepatology</i> , 2018 , 67, 247-259	11.2	70
42	Senescent cell clearance by the immune system: Emerging therapeutic opportunities. <i>Seminars in Immunology</i> , 2018 , 40, 101275	10.7	138
41	Premature Physiologic Aging as a Paradigm for Understanding Increased Risk of Adverse Health Across the Lifespan of Survivors of Childhood Cancer. <i>Journal of Clinical Oncology</i> , 2018 , 36, 2206-2215	2.2	51
40	Fisetin is a senotherapeutic that extends health and lifespan. <i>EBioMedicine</i> , 2018 , 36, 18-28	8.8	298
39	Aging, Cell Senescence, and Chronic Disease: Emerging Therapeutic Strategies. <i>JAMA - Journal of the American Medical Association</i> , 2018 , 320, 1319-1320	27.4	123
38	Cellular senescence mediates fibrotic pulmonary disease. <i>Nature Communications</i> , 2017 , 8, 14532	17.4	616
37	Cellular Senescence: A Translational Perspective. <i>EBioMedicine</i> , 2017 , 21, 21-28	8.8	453
36	Report: NIA Workshop on Measures of Physiologic Resiliencies in Human Aging. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2017 , 72, 980-990	6.4	62

35	Cellular senescence drives age-dependent hepatic steatosis. <i>Nature Communications</i> , 2017 , 8, 15691	17.4	408
34	The Clinical Potential of Senolytic Drugs. <i>Journal of the American Geriatrics Society</i> , 2017 , 65, 2297-2301	5.6	2 90
33	Targeting cellular senescence prevents age-related bone loss in mice. <i>Nature Medicine</i> , 2017 , 23, 1072-7	1 0 7895	464
32	Identification of HSP90 inhibitors as a novel class of senolytics. <i>Nature Communications</i> , 2017 , 8, 422	17.4	312
31	Biology of premature ageing in survivors of cancer. ESMO Open, 2017, 2, e000250	6	85
30	New agents that target senescent cells: the flavone, fisetin, and the BCL-X inhibitors, A1331852 and A1155463. <i>Aging</i> , 2017 , 9, 955-963	5.6	286
29	TNFBenescence initiates a STAT-dependent positive feedback loop, leading to a sustained interferon signature, DNA damage, and cytokine secretion. <i>Aging</i> , 2017 , 9, 2411-2435	5.6	55
28	Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2017 , 72, 780-785	6.4	111
27	Evaluating Health Span in Preclinical Models of Aging and Disease: Guidelines, Challenges, and Opportunities for Geroscience. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2016 , 71, 1395-1406	6.4	32
26	Exercise Prevents Diet-Induced Cellular Senescence in Adipose Tissue. <i>Diabetes</i> , 2016 , 65, 1606-15	0.9	137
25	Translating the Science of Aging into Therapeutic Interventions. <i>Cold Spring Harbor Perspectives in Medicine</i> , 2016 , 6, a025908	5.4	37
24	Aging and adipose tissue: potential interventions for diabetes and regenerative medicine. <i>Experimental Gerontology</i> , 2016 , 86, 97-105	4.5	180
23	Identification of Senescent Cells in the Bone Microenvironment. <i>Journal of Bone and Mineral Research</i> , 2016 , 31, 1920-1929	6.3	214
22	Perspective: Targeting the JAK/STAT pathway to fight age-related dysfunction. <i>Pharmacological Research</i> , 2016 , 111, 152-154	10.2	37
21	Resilience in Aging Mice. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2016 , 71, 1407-1414	6.4	43
20	Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. <i>Aging Cell</i> , 2016 , 15, 428-35	9.9	463
19	Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. <i>Aging Cell</i> , 2016 , 15, 973-7	9.9	382
18	The AchillesSheel of senescent cells: from transcriptome to senolytic drugs. <i>Aging Cell</i> , 2015 , 14, 644-58	3 9.9	987

LIST OF PUBLICATIONS

17	Cellular Senescence in Type 2 Diabetes: A Therapeutic Opportunity. <i>Diabetes</i> , 2015 , 64, 2289-98	0.9	211
16	Cellular Senescence and the Biology of Aging, Disease, and Frailty. <i>Nestle Nutrition Institute Workshop Series</i> , 2015 , 83, 11-8	1.9	86
15	Targeting senescent cells enhances adipogenesis and metabolic function in old age. <i>ELife</i> , 2015 , 4, e12	997 9	299
14	Clinical strategies and animal models for developing senolytic agents. <i>Experimental Gerontology</i> , 2015 , 68, 19-25	4.5	102
13	JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E6301-	10 ^{11.5}	357
12	Markers of cellular senescence are elevated in murine blastocysts cultured in vitro: molecular consequences of culture in atmospheric oxygen. <i>Journal of Assisted Reproduction and Genetics</i> , 2014 , 31, 1259-67	3.4	21
11	Insulin-like growth factor-1 regulates the SIRT1-p53 pathway in cellular senescence. <i>Aging Cell</i> , 2014 , 13, 669-78	9.9	93
10	Deleted in Breast Cancer 1 regulates cellular senescence during obesity. <i>Aging Cell</i> , 2014 , 13, 951-3	9.9	18
9	Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. <i>Current Opinion in Clinical Nutrition and Metabolic Care</i> , 2014 , 17, 324-8	3.8	170
8	Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. <i>Aging</i> , 2014 , 6, 575-86	5.6	91
7	Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. <i>Journal of Clinical Investigation</i> , 2013 , 123, 966-72	15.9	971
6	Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. <i>Nature</i> , 2011 , 479, 232-6	50.4	2098
5	Fat tissue, aging, and cellular senescence. Aging Cell, 2010, 9, 667-84	9.9	645
4	Activin a plays a critical role in proliferation and differentiation of human adipose progenitors. <i>Diabetes</i> , 2010 , 59, 2513-21	0.9	113
3	Aging, depot origin, and preadipocyte gene expression. <i>Journals of Gerontology - Series A Biological Sciences and Medical Sciences</i> , 2010 , 65, 242-51	6.4	68
2	KDM4 Orchestrates Epigenomic Remodeling of Senescent Cells and Potentiates the Senescence-Associated Secretory Phenotype		2
1	Procyanidin C1 is a natural agent with senolytic activity against aging and age-related diseases		1