Filippo Bergamasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/798336/publications.pdf Version: 2024-02-01

7

#	Article	IF	CITATIONS
1	Deep Demosaicing for Polarimetric Filter Array Cameras. IEEE Transactions on Image Processing, 2022, 31, 2017-2026.	9.8	16
2	One-Shot HDR Imaging viaÂStereo PFA Cameras. Lecture Notes in Computer Science, 2022, , 467-478.	1.3	1
3	A Relevance-Based CNN Trimming Method forÂLow-Resources Embedded Vision. Lecture Notes in Computer Science, 2022, , 297-309.	1.3	2
4	Towards a unified framework for extreme sea waves from spectral models: rationale and applications. Ocean Engineering, 2021, 219, 108263.	4.3	20
5	Toward real-time optical estimation of ocean waves' space-time fields. Computers and Geosciences, 2021, 147, 104666.	4.2	5
6	Spatially Distributed Sea Wave Measurements. Journal of Marine Science and Engineering, 2021, 9, 238.	2.6	2
7	On the extreme value statistics of spatio-temporal maximum sea waves under cyclone winds. Progress in Oceanography, 2021, 197, 102642.	3.2	7
8	A Physics-Driven CNN Model for Real-Time Sea Waves 3D Reconstruction. Remote Sensing, 2021, 13, 3780.	4.0	8
9	A Low-Cost Stereo Video System for Measuring Directional Wind Waves. Journal of Marine Science and Engineering, 2020, 8, 831.	2.6	11
10	A data set of sea surface stereo images to resolve space-time wave fields. Scientific Data, 2020, 7, 145.	5.3	22
11	Cylinders extraction in non-oriented point clouds as a clustering problem. Pattern Recognition, 2020, 107, 107443.	8.1	13
12	Geolocating Time: Digitisation and Reverse Engineering of a Roman Sundial. Lecture Notes in Computer Science, 2020, , 143-158.	1.3	1
13	Analysis of the effect of fish oil on wind waves and implications for air–water interaction studies. Ocean Science, 2019, 15, 725-743.	3.4	6
14	Robust phase unwrapping by probabilistic consensus. Optics and Lasers in Engineering, 2019, 121, 428-440.	3.8	14
15	Saliency-Driven Variational Retargeting for Historical Maps. Lecture Notes in Computer Science, 2019, , 617-630.	1.3	0
16	Stereo imaging and X-band radar wave data fusion: An assessment. Ocean Engineering, 2018, 152, 346-352.	4.3	14
17	Cross-Dataset Data Augmentation for Convolutional Neural Networks Training. , 2018, , .		6

Adaptive Albedo Compensation for Accurate Phase-Shift Coding. , 2018, , .

2

FILIPPO BERGAMASCO

#	Article	IF	CITATIONS
19	Neighborhood-Based Recovery of Phase Unwrapping Faults. , 2018, , .		2
20	Characterizing the signature of a spatio-temporal wind wave field. Ocean Modelling, 2018, 129, 104-123.	2.4	17
21	Learning Computer Vision Through the Development of a Camera-Trackable Game Controller. , 2018, , 1893-1903.		0
22	Numerical modeling of space-time wave extremes using WAVEWATCH III. Ocean Dynamics, 2017, 67, 535-549.	2.2	24
23	On the shape and likelihood of oceanic rogue waves. Scientific Reports, 2017, 7, 8276.	3.3	39
24	WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves. Computers and Geosciences, 2017, 107, 28-36.	4.2	48
25	Parameter-Free Lens Distortion Calibration of Central Cameras. , 2017, , .		12
26	Spectral Dichromatic Parameter Recovery from Two Views via Total Variation Hyper-priors. Lecture Notes in Computer Science, 2017, , 317-333.	1.3	0
27	Multi-view horizon-driven sea plane estimation for stereo wave imaging on moving vessels. Computers and Geosciences, 2016, 95, 105-117.	4.2	6
28	Dense multi-view homography estimation and plane segmentation. , 2016, , .		1
29	Robust joint selection of camera orientations and feature projections over multiple views. , 2016, , .		6
30	A game-theoretical approach for joint matching of multiple feature throughout unordered images. , 2016, , .		3
31	A 5 degrees of freedom multi-user pointing device for interactive whiteboards. Pattern Analysis and Applications, 2016, 19, 237-250.	4.6	0
32	Stereo wave imaging from moving vessels: Practical use and applications. Coastal Engineering, 2016, 109, 114-127.	4.0	34
33	An Accurate and Robust Artificial Marker Based on Cyclic Codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38, 2359-2373.	13.9	50
34	Analysis and Interpretation of Frequency–Wavenumber Spectra of Young Wind Waves. Journal of Physical Oceanography, 2015, 45, 2484-2496.	1.7	64
35	Adopting an unconstrained ray model in light-field cameras for 3D shape reconstruction. , 2015, , .		10
36	Observation of Extreme Sea Waves in a Space–Time Ensemble. Journal of Physical Oceanography, 2015, 45, 2261-2275.	1.7	75

FILIPPO BERGAMASCO

#	Article	IF	CITATIONS
37	Phase-based spatio-temporal interpolation for accurate 3D localization in camera networks. Pattern Recognition Letters, 2015, 63, 1-8.	4.2	0
38	Italian seas wave extremes: a preliminary assessment. Rendiconti Lincei, 2015, 26, 25-35.	2.2	4
39	Dynamic Optimal Path Selection for 3D Triangulation with Multiple Cameras. Lecture Notes in Computer Science, 2015, , 468-479.	1.3	8
40	Design and Evaluation of a Viewer-Dependent Stereoscopic Display. , 2014, , .		3
41	High-Coverage 3D Scanning through Online Structured Light Calibration. , 2014, , .		4
42	A low cost tracking system for position-dependent 3D visual interaction. , 2014, , .		1
43	Camera Calibration from Coplanar Circles. , 2014, , .		11
44	Towards an Operational Stereo System for Directional Wave Measurements From Moving Platforms. , 2014, , .		5
45	Stochastic Space-Time Extremes of Wind Sea States: Validation and Modeling. , 2014, , .		4
46	A Practical Setup for Projection-Based Augmented Maps. Advances in Human and Social Aspects of Technology Book Series, 2014, , 13-22.	0.3	0
47	Learning Computer Vision through the Development of a Camera-Trackable Game Controller. Advances in Human and Social Aspects of Technology Book Series, 2014, , 154-163.	0.3	1
48	Using multiple sensors for reliable markerless identification through supervised learning. Machine Vision and Applications, 2013, 24, 1539-1554.	2.7	3
49	Pi-Tag: a fast image-space marker design based on projective invariants. Machine Vision and Applications, 2013, 24, 1295-1310.	2.7	53
50	A Scale Independent Selection Process for 3D Object Recognition in Cluttered Scenes. International Journal of Computer Vision, 2013, 102, 129-145.	15.6	85
51	Can a Fully Unconstrained Imaging Model Be Applied Effectively to Central Cameras?. , 2013, , .		9
52	A Robust Multi-camera 3D Ellipse Fitting for Contactless Measurements. , 2012, , .		12
53	A game-theoretic approach to deformable shape matching. , 2012, , .		53
54	A graph-based technique for semi-supervised segmentation of 3D surfaces. Pattern Recognition Letters, 2012, 33, 2057-2064.	4.2	11

#	Article	IF	CITATIONS
55	RUNE-Tag: A high accuracy fiducial marker with strong occlusion resilience. , 2011, , .		76
56	A Non-cooperative Game for 3D Object Recognition in Cluttered Scenes. , 2011, , .		16
57	Image-Space Marker Detection and Recognition Using Projective Invariants. , 2011, , .		12
58	Semi-supervised Segmentation of 3D Surfaces Using a Weighted Graph Representation. Lecture Notes in Computer Science, 2011, , 225-234.	1.3	3
59	Practical Metrics for Error Assessment with Interactive Museum Installations. Advances in Social Networking and Online Communities Book Series, 0, , 70-83.	0.4	0