Yuting Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7983101/publications.pdf Version: 2024-02-01

YUTING WEN

#	Article	IF	CITATIONS
1	A hydrogel with supramolecular surface functionalization for cancer cell capture and multicellular spheroid growth and release. Chemical Communications, 2022, 58, 681-684.	4.1	7
2	Smart Hydrogel Formed by Alginate-g-Poly(N-isopropylacrylamide) and Chitosan through Polyelectrolyte Complexation and Its Controlled Release Properties. Gels, 2022, 8, 441.	4.5	9
3	Nonviral DNA Delivery System with Supramolecular PEGylation Formed by Host–Guest Pseudo-Block Copolymers. ACS Applied Bio Materials, 2021, 4, 5057-5070.	4.6	10
4	β-Cyclodextrin-Polyacrylamide Hydrogel for Removal of Organic Micropollutants from Water. Molecules, 2021, 26, 5031.	3.8	26
5	In Situ Synthesis of Magnetic Poly(DMAEAB-co-NIPAm)@Fe3O4 Composite Hydrogel for Removal of Dye from Water. Gels, 2021, 7, 201.	4.5	7
6	A supramolecular platform for controlling and optimizing molecular architectures of siRNA targeted delivery vehicles. Science Advances, 2020, 6, eabc2148.	10.3	29
7	Chemical Modification of Biomass Okara Using Poly(acrylic acid) through Free Radical Graft Polymerization. Journal of Agricultural and Food Chemistry, 2020, 68, 13241-13246.	5.2	18
8	Converting Okara to Superabsorbent Hydrogels as Soil Supplements for Enhancing the Growth of Choy Sum (<i>Brassica</i> sp.) under Water-Limited Conditions. ACS Sustainable Chemistry and Engineering, 2020, 8, 9425-9433.	6.7	25
9	Thermoresponsive Hydrogel Induced by Dual Supramolecular Assemblies and Its Controlled Release Property for Enhanced Anticancer Drug Delivery. Biomacromolecules, 2020, 21, 1516-1527.	5.4	67
10	Surface Charge Switchable Polymer/DNA Nanoparticles Responsive to Tumor Extracellular pH for Tumor-Triggered Enhanced Gene Delivery. Biomacromolecules, 2020, 21, 1136-1148.	5.4	39
11	A smart thermoresponsive adsorption system for efficient copper ion removal based on alginate-g-poly(N-isopropylacrylamide) graft copolymer. Carbohydrate Polymers, 2019, 219, 280-289.	10.2	39
12	Ultrastable micelles boost chemotherapy. Nature Biomedical Engineering, 2018, 2, 273-274.	22.5	5
13	Injectable Thermoresponsive Hydrogel Formed by Alginate- <i>g</i> -Poly(<i>N</i> -isopropylacrylamide) That Releases Doxorubicin-Encapsulated Micelles as a Smart Drug Delivery System. ACS Applied Materials & Interfaces, 2017, 9, 35673-35682.	8.0	178
14	Thermoresponsive supramolecular micellar drug delivery system based on star-linear pseudo-block polymer consisting of β-cyclodextrin-poly(N-isopropylacrylamide) and adamantyl-poly(ethylene glycol). Journal of Colloid and Interface Science, 2017, 490, 372-379.	9.4	58
15	Thermoresponsive Delivery of Paclitaxel by β-Cyclodextrin-Based Poly(<i>N</i> -isopropylacrylamide) Star Polymer via Inclusion Complexation. Biomacromolecules, 2016, 17, 3957-3963.	5.4	68
16	Host–guest interaction induced supramolecular amphiphilic star architecture and uniform nanovesicle formation for anticancer drug delivery. Nanoscale, 2016, 8, 1332-1337.	5.6	25
17	Highly Efficient Multifunctional Supramolecular Gene Carrier System Selfâ€Assembled from Redox‣ensitive and Zwitterionic Polymer Blocks. Advanced Functional Materials, 2014, 24, 3874-3884.	14.9	98
18	Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials, 2012, 33, 8111-8121.	11.4	91

YUTING WEN

#	Article	IF	CITATIONS
19	Alginate-Graft-PEI as a Gene Delivery Vector with High Efficiency and Low Cytotoxicity. Journal of Biomaterials Science, Polymer Edition, 2012, 23, 315-331.	3.5	20
20	Charge shielding effects on gene delivery of polyethylenimine/DNA complexes: PEGylation and phospholipid coating. Journal of Materials Science: Materials in Medicine, 2012, 23, 1685-1695.	3.6	38
21	A novel dendrimer based on poly (L-glutamic acid) derivatives as an efficient and biocompatible gene delivery vector. Nanotechnology, 2011, 22, 375102.	2.6	24
22	Short multi-armed polylysine-graft-polyamidoamine copolymer as efficient gene vectors. International Journal of Pharmaceutics, 2011, 420, 206-215.	5.2	26
23	Efficient Intracellular Gene Delivery Using the Formulation Composed of Poly (L-glutamic Acid) Grafted Polyethylenimine and Histone. Pharmaceutical Research, 2011, 28, 812-826.	3.5	15
24	A serum-resistant polyamidoamine-based polypeptide dendrimer for gene transfection. Biomaterials, 2011, 32, 1619-1634.	11.4	57
25	Stability of poly(ethylene glycol)-graft-polyethylenimine copolymer/DNA complexes: influences of PEG molecular weight and PEGylation degree. Journal of Materials Science: Materials in Medicine, 2010, 21, 597-607.	3.6	20
26	Paclitaxel-loaded micelles composed of folate-poly(ethylene glycol) and poly(γ-benzyl l-glutamate) diblock copolymer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353, 140-148.	4.7	21
27	Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery. Nanotechnology, 2010, 21, 045102.	2.6	19
28	Synthesis of Poly(ethylene glycol)-g-Chitosan-g-Poly(ethylene imine) Co-polymer and In Vitro Study of Its Suitability as a Gene-Delivery Vector. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 741-758.	3.5	10
29	PEG- and PDMAEG-Graft-Modified Branched PEI as Novel Gene Vector: Synthesis, Characterization and Gene Transfection. Journal of Biomaterials Science, Polymer Edition, 2010, 21, 1103-1126.	3.5	21
30	High mobility group box 1 protein enhances polyethylenimine mediated gene delivery in vitro. International Journal of Pharmaceutics, 2009, 375, 140-147.	5.2	26
31	A Biodegradable Low Molecular Weight Polyethylenimine Derivative as Low Toxicity and Efficient Gene Vector. Bioconjugate Chemistry, 2009, 20, 322-332.	3.6	152
32	Structural investigations of novel triblock cationic copolymer/DNA complexes. , 2008, , 18-21.		1