
Derek B Schaeffer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7983053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mars Reconnaissance Orbiter Mars Color Imager (MARCI): Instrument description, calibration, and performance. Journal of Geophysical Research, 2009, 114, .	3.3	79
2	Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas. Review of Scientific Instruments, 2009, 80, 113505.	0.6	73
3	Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory. Physical Review Letters, 2017, 119, 025001.	2.9	66
4	Observation of collisionless shocks in a large currentâ€free laboratory plasma. Geophysical Research Letters, 2014, 41, 7413-7418.	1.5	62
5	Dynamics of exploding plasmas in a large magnetized plasma. Physics of Plasmas, 2013, 20, .	0.7	45
6	Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma. Astrophysics and Space Science, 2009, 322, 155-159.	0.5	40
7	Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston. Physics of Plasmas, 2012, 19, .	0.7	34
8	High-energy Nd:glass laser facility for collisionless laboratory astrophysics. Journal of Instrumentation, 2012, 7, P03010-P03010.	0.5	34
9	Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas. Physical Review Letters, 2019, 122, 245001.	2.9	33
10	Hybrid simulation of shock formation for super-Alfvénic expansion of laser ablated debris through an ambient, magnetized plasma. Physics of Plasmas, 2013, 20, .	0.7	29
11	Collisionless momentum transfer in space and astrophysical explosions. Nature Physics, 2017, 13, 573-577.	6.5	26
12	On the generation of magnetized collisionless shocks in the large plasma device. Physics of Plasmas, 2017, 24, .	0.7	26
13	Kinetic simulation of magnetic field generation and collisionless shock formation in expanding laboratory plasmas. Physics of Plasmas, 2018, 25, .	0.7	26
14	Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics. Journal of Applied Physics, 2016, 120, .	1.1	24
15	High-Mach number, laser-driven magnetized collisionless shocks. Physics of Plasmas, 2017, 24, .	0.7	23
16	Laser-driven, magnetized quasi-perpendicular collisionless shocks on the Large Plasma Device. Physics of Plasmas, 2014, 21, .	0.7	22
17	Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston. Physics of Plasmas, 2015, 22, .	0.7	22
18	Demonstration of a low electromagnetic pulse laser-driven argon gas jet x-ray source. Applied Physics Letters, 2012, 101, .	1.5	19

2

DEREK B SCHAEFFER

#	Article	IF	CITATIONS
19	Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma. Physics of Plasmas, 2018, 25, .	0.7	19
20	A platform for high-repetition-rate laser experiments on the Large Plasma Device. High Power Laser Science and Engineering, 2018, 6, .	2.0	14
21	Biermann-Battery-Mediated Magnetic Reconnection in 3D Colliding Plasmas. Physical Review Letters, 2018, 121, 095001.	2.9	12
22	Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas. Physics of Plasmas, 2020, 27, .	0.7	12
23	Laboratory Observations of Ultra-low-frequency Analog Waves Driven by the Right-hand Resonant Ion Beam Instability. Astrophysical Journal Letters, 2020, 891, L11.	3.0	12
24	Bias Voltage Control in Pulsed Applications for Mach–Zehnder Electrooptic Intensity Modulators. IEEE Transactions on Control Systems Technology, 2017, 25, 1890-1895.	3.2	10
25	Collisionless Shocks in a Large Magnetized Laser-Plasma Plume. IEEE Transactions on Plasma Science, 2011, 39, 2406-2407.	0.6	9
26	Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results. Physics of Plasmas, 2022, 29, .	0.7	9
27	Thomson Scattering Measurements of Temperature and Density in a Low-Density, Laser-Driven Magnetized Plasma. Journal of Instrumentation, 2012, 7, P02002-P02002.	0.5	8
28	Enhanced collisionless shock formation in a magnetized plasma containing a density gradient. Physical Review E, 2014, 90, 041101.	0.8	8
29	Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma. High Energy Density Physics, 2017, 22, 17-20.	0.4	7
30	Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma. Physics of Plasmas, 2017, 24, .	0.7	7
31	Raster Thomson scattering in large-scale laser plasmas produced at high repetition rate. Review of Scientific Instruments, 2021, 92, 093102.	0.6	7
32	High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions. High Power Laser Science and Engineering, 2022, 10, .	2.0	7
33	A scalable multipass laser cavity based on injection by frequency conversion for noncollective Thomson scattering. Review of Scientific Instruments, 2010, 81, 10D518.	0.6	6
34	Feasibility of characterizing laser-ablated carbon plasmas via planar laser induced fluorescence. Review of Scientific Instruments, 2012, 83, 10E515.	0.6	5
35	Spatially resolved Thomson scattering measurements of the transition from the collective to the non-collective regime in a laser-produced plasma. Review of Scientific Instruments, 2016, 87, 11E701.	0.6	5
36	Laser-produced plasmas as drivers of laboratory collisionless quasi-parallel shocks. Physics of Plasmas, 2020, 27, 042103.	0.7	5

DEREK B SCHAEFFER

#	Article	IF	CITATIONS
37	Proton deflectometry with <i>in situ</i> x-ray reference for absolute measurement of electromagnetic fields in high-energy-density plasmas. Review of Scientific Instruments, 2022, 93, 023502.	0.6	4
38	Laser-driven, ion-scale magnetospheres in laboratory plasmas. II. Particle-in-cell simulations. Physics of Plasmas, 2022, 29, .	0.7	4
39	Ion velocity distribution measurements in a magnetized laser plasma expansion. Journal of Instrumentation, 2010, 5, P06004-P06004.	0.5	3
40	Mapping the ionization state of laser-irradiated Ar gas jets with multiwavelength monochromatic x-ray imaging. Review of Scientific Instruments, 2010, 81, 10E526.	0.6	3
41	Regimes of magnetic reconnection in colliding laser-produced magnetized plasma bubbles. Physics of Plasmas, 2018, 25, .	0.7	3
42	Measurements of ion velocity distributions in a large scale laser-produced plasma. Review of Scientific Instruments, 2020, 91, 103103.	0.6	3
43	Kinetic Simulations of Electron Pre-energization by Magnetized Collisionless Shocks in Expanding Laboratory Plasmas. Astrophysical Journal Letters, 2021, 908, L52.	3.0	3
44	Design of proton deflectometry with in situ x-ray fiducial for magnetized high-energy-density systems. Applied Optics, 2022, 61, C133.	0.9	3
45	Magnetic field measurements in low density plasmas using paramagnetic Faraday rotator glass. Review of Scientific Instruments, 2012, 83, 10D503.	0.6	2
46	Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma. Physics of Plasmas, 2014, 21, .	0.7	2
47	Measurements of electron temperature in high-energy-density plasmas using gated x-ray pinhole imaging. Review of Scientific Instruments, 2021, 92, 043524.	0.6	2
48	Proton radiography of non-uniform initial magnetic fields in HED plasmas. , 2021, , .		0