Kenta Yamanaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982995/publications.pdf Version: 2024-02-01

		117571	175177
130	3,485	34	52
papers	citations	h-index	g-index
132	132	132	2146
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Significant lattice-distortion effect on compressive deformation in Mo-added CoCrFeNi-based high-entropy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 830, 142295.	2.6	17
2	Superior hardness–corrosion-resistance combination in a Co-, Cu-modified Ni–Cr–Mo alloy via multiple nanoscale segregation mechanisms. Scripta Materialia, 2022, 209, 114389.	2.6	1
3	Spreading behavior of Ti 48Al 2Cr 2Nb powders in powder bed fusion additive manufacturing process: Experimental and discrete element method study. Additive Manufacturing, 2022, 49, 102489.	1.7	8
4	Adhesion mechanism of cold-sprayed Sn coatings on carbon fiber reinforced plastics. Applied Surface Science, 2022, 579, 151873.	3.1	13
5	Study on Hot Deformation Behavior of Beta Ti-17Mo Alloy for Biomedical Applications. Jom, 2022, 74, 494-505.	0.9	7
6	Ball-milling treatment of gas-atomized Ti 48Al 2Cr 2Nb powder and its effect on preventing smoking during electron beam powder bed fusion building process. Additive Manufacturing, 2022, 51, 102634.	1.7	1
7	Microstructure and mechanical properties of Ti–Nb–Fe–Zr alloys with high strength and low elastic modulus. Transactions of Nonferrous Metals Society of China, 2022, 32, 503-512.	1.7	11
8	Microstructure, mechanical properties, and cytotoxicity of low Young's modulus Ti–Nb–Fe–Sn alloys. Journal of Materials Science, 2022, 57, 5634-5644.	1.7	6
9	Analysis of hierarchical microstructural evolution in electron beam powder bed fusion Ti–6Al–4V alloys via time-of-flight neutron diffraction. Additive Manufacturing Letters, 2022, 3, 100053.	0.9	1
10	Dynamic recrystallization of Sn coatings on carbon-fiber-reinforced plastics during cold spray additive manufacturing. Additive Manufacturing, 2022, 56, 102949.	1.7	2
11	Demonstrating a duplex TRIP/TWIP titanium alloy via the introduction of metastable retained β-phase. Materials Research Letters, 2022, 10, 754-761.	4.1	5
12	The significance of thermomechanical processing on the cellular response of biomedical Co–Cr–Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2022, 133, 105360.	1.5	1
13	A survey on basic influencing factors of solidified grain morphology during electron beam melting. Materials and Design, 2022, 221, 110927.	3.3	3
14	Quantifying the dislocation structures of additively manufactured Ti–6Al–4V alloys using X-ray diffraction line profile analysis. Additive Manufacturing, 2021, 37, 101678.	1.7	8
15	Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam. Powder Technology, 2021, 381, 44-54.	2.1	27
16	Thermal Effects in Sn Coating on a Carbon Fiber Reinforced Plastic by Cold Spraying. Journal of Thermal Spray Technology, 2021, 30, 1254-1261.	1.6	11
17	Calculation-driven design of off-equiatomic high-entropy alloys with enhanced solid-solution strengthening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 817, 141359.	2.6	11
18	Smoke Suppression in Electron Beam Melting of Inconel 718 Alloy Powder Based on Insulator–Metal Transition of Surface Oxide Film by Mechanical Stimulation. Materials, 2021, 14, 4662.	1.3	25

#	Article	IF	CITATIONS
19	Surface evolution and corrosion behaviour of Cu-doped carbide-reinforced martensitic steels in a sulfuric acid solution. Npj Materials Degradation, 2021, 5, .	2.6	5
20	The microstructure and mechanical properties of selective electron beam melting manufactured 9–12Cr ferritic/martensitic steel using N- and Ar-atomized powder. Additive Manufacturing, 2021, 45, 102075.	1.7	3
21	Characterization of oxide films on wrought Co–Cr–Mo–xSi alloys exposed to high-temperature oxidation. Corrosion Science, 2021, 191, 109753.	3.0	5
22	Controlling factors determining flowability of powders for additive manufacturing: A combined experimental and simulation study. Powder Technology, 2021, 393, 482-493.	2.1	29
23	Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process. Powder Technology, 2021, 393, 301-311.	2.1	12
24	Synergetic strengthening in HfMoNbTaTi refractory high-entropy alloy via disordered nanoscale phase and semicoherent refractory particle. Materials and Design, 2021, 212, 110248.	3.3	30
25	Favorable modulation of osteoblast cellular activity on Zrâ€modified Co–Cr–Mo alloy: The significant impact of zirconium on cell–substrate interactions. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1518-1526.	1.6	5
26	Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting. Additive Manufacturing, 2020, 36, 101559.	1.7	24
27	Phase transformation and evolution of dislocation structure in the Î ² phase of Ti-17 alloy during hot deformation. MATEC Web of Conferences, 2020, 321, 13006.	0.1	Ο
28	Manufacturing of a nanosized TiB strengthened Ti-based alloy via electron beam powder bed fusion. Additive Manufacturing, 2020, 36, 101472.	1.7	5
29	Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4ÂV alloy powder. Powder Technology, 2020, 376, 363-372.	2.1	16
30	Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process. Scientific Reports, 2020, 10, 18446.	1.6	15
31	Corrosion mechanism of an equimolar AlCoCrFeNi high-entropy alloy additively manufactured by electron beam melting. Npj Materials Degradation, 2020, 4, .	2.6	55
32	Low Young's Modulus and High Strength Obtained in Ti-Nb-Zr-Cr Alloys by Optimizing Zr Content. Journal of Materials Engineering and Performance, 2020, 29, 2871-2878.	1.2	6
33	A study on wettability and formation of intermetallic phase between Co–Cr–Mo alloy and Sn-Solder used as a potential under bump metallization for flip-chip packages. Intermetallics, 2020, 125, 106875.	1.8	5
34	Significance of powder feedstock characteristics in defect suppression of additively manufactured Inconel 718. Additive Manufacturing, 2020, 34, 101277.	1.7	14
35	Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing. Journal of Materials Science and Technology, 2020, 50, 162-170.	5.6	16
36	Hot deformation characteristics and dynamic recrystallization mechanisms of a Co–Ni-based superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 788, 139638.	2.6	58

#	Article	IF	CITATIONS
37	Influence of interatomic interactions on the mechanical properties of face-centered cubic multicomponent Co–Ni–Cr–Mo alloys. Materialia, 2020, 12, 100742.	1.3	9
38	Effect of microstructure on tensile properties of Ti-17 alloys forged using a 1500-ton forging simulator. MATEC Web of Conferences, 2020, 321, 04014.	0.1	1
39	Macro-mesoscale microstructural evolution modeling under hot forging of a Ti-17 alloy with a lamellar (α+β) starting microstructure. MATEC Web of Conferences, 2020, 321, 13005.	0.1	3
40	VBTree Tutorial: Automatic Completion of Group Operation on Structural Dataset. , 2020, , .		0
41	Preparation of high-strength Coâ^'Crâ^'Mo alloy rods via hot-caliber rolling. Materialia, 2020, 12, 100729.	1.3	9
42	In situ synchrotron X-ray diffraction line-profile analysis of additively manufactured Tiâ^'6Alâ^'4V alloy under tensile deformation. MATEC Web of Conferences, 2020, 321, 03026.	0.1	0
43	Preface to the Special Issue on "Bioadaptive Materials, Design of Biomaterials Based on the Biological Mechanisms― Materia Japan, 2020, 59, 587-587.	0.1	Ο
44	Cold-Workability and Microstructure Change with β-Phase Stability in High-Strength Ti-Mn Binary Alloys. Jom, 2019, 71, 3590-3599.	0.9	8
45	Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam. Materials Letters, 2019, 254, 269-272.	1.3	6
46	Corrosion-resistant carbide-reinforced martensitic steel by Cu modification. Npj Materials Degradation, 2019, 3, .	2.6	6
47	Microstructural control of alloy 718 fabricated by electron beam melting with expanded processing window by adaptive offset method. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138058.	2.6	24
48	Effect of Al content and cold rolling on the microstructure and mechanical properties of Al5Cr12Fe35Mn28Ni20 high-entropy alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 759, 380-390.	2.6	39
49	Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy. Materialia, 2019, 6, 100346.	1.3	23
50	The influence of temperature during water-quench rapid heat treatment on the microstructure, mechanical properties and biocompatibility of Ti 6Al 4V ELI alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 96, 144-151.	1.5	18
51	Abnormal grain growth in commercially pure titanium during additive manufacturing with electron beam melting. Materialia, 2019, 6, 100281.	1.3	37
52	Low Springback and Low Young's Modulus in Ti–29Nb–13Ta–4.6Zr Alloy Modified by Mo Addition. Materials Transactions, 2019, 60, 1755-1762.	0.4	5
53	Effect of multipass thermomechanical processing on the corrosion behaviour of biomedical Co–Cr–Mo alloys. Corrosion Science, 2019, 148, 178-187.	3.0	27
54	Mechanical and corrosion properties of CoCrFeNiTi-based high-entropy alloy additive manufactured using selective laser melting. Additive Manufacturing, 2019, 25, 412-420.	1.7	54

#	Article	IF	CITATIONS
55	Tuning strain-induced γ-to-ε martensitic transformation of biomedical Co–Cr–Mo alloys by introducing parent phase lattice defects. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 523-529.	1.5	25
56	A Constitutive Model and Processing Maps Describing the Highâ€Temperature Deformation Behavior of Tiâ€17 Alloy in the <i>β</i> â€Phase Field. Advanced Engineering Materials, 2019, 21, 1800775.	1.6	21
57	Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy. Additive Manufacturing, 2019, 26, 202-214.	1.7	69
58	Significant impact of yttrium microaddition on high temperature tensile properties of Inconel 713C superalloy. Materials Letters, 2018, 227, 40-43.	1.3	12
59	Effect of nitrogen on the microstructure and mechanical properties of Co–33Cr–9W alloys prepared by dental casting. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 693-700.	1.5	10
60	Strain-Induced Martensitic Transformation and Texture Evolution in Cold-Rolled Co–Cr Alloys. Quantum Beam Science, 2018, 2, 11.	0.6	11
61	Impact of minor alloying with C and Si on the precipitation behavior and mechanical properties of N-doped Co–Cr alloy dental castings. Materials Science and Engineering C, 2018, 92, 112-120.	3.8	10
62	Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting. Additive Manufacturing, 2018, 23, 264-271.	1.7	69
63	Electron beam additive manufacturing of Inconel 718 alloy rods: Impact of build direction on microstructure and high-temperature tensile properties. Additive Manufacturing, 2018, 23, 457-470.	1.7	60
64	Current status of Metal Additive Manufacturing and Microstructure Control of Metal Parts in Powder Bed Fusionï¼^PBF). Journal of Smart Processing, 2018, 7, 216-222.	0.0	3
65	Continuous Measurements of Recrystallization and Grain Growth in Cobalt Super Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 2363-2374.	1.1	17
66	Study of microstructure evolution and properties of Cu-Fe microcomposites produced by a pre-alloyed powder method. Materials and Design, 2017, 126, 64-72.	3.3	39
67	Stacking-fault strengthening of biomedical Co–Cr–Mo alloy via multipass thermomechanical processing. Scientific Reports, 2017, 7, 10808.	1.6	49
68	CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment. Materials Letters, 2017, 189, 148-151.	1.3	130
69	Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 680, 239-248.	2.6	91
70	Forging property, processing map, and mesoscale microstructural evolution modeling of a Ti-17 alloy with a lamellar (l±+l²) starting microstructure. Science and Technology of Advanced Materials, 2017, 18, 893-904.	2.8	31
71	Characterization of powder bed generation in electron beam additive manufacturing by discrete element method (DEM). Materials Today: Proceedings, 2017, 4, 11437-11440.	0.9	19
72	Guide to Development of Innovative Joining Technology. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2017, 86, 570-578.	0.0	0

Kenta Yamanaka

#	Article	IF	CITATIONS
73	Line-Profile Analysis Combined with Texture Analysis for Characterizing Dislocation Distribution in Texture Components of Cold-Rolled Copper Sheets. High Temperature Materials and Processes, 2016, 35, 705-713.	0.6	4
74	Investigation on hot deformation behavior of nanoscale TiC-strengthened Cu alloys fabricated by mechanical milling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 668, 1-12.	2.6	17
75	Precipitation behavior of a novel cobalt-based superalloy subjected to prior plastic deformations. Materials and Design, 2016, 112, 1-10.	3.3	24
76	Development of microstructure and mechanical properties during annealing of a cold-swaged Co–Cr–Mo alloy rod. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 187-198.	1.5	10
77	Effect of Building Position on Phase Distribution in Co-Cr-Mo Alloy Additive Manufactured by EBM. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2016, 63, 10-16.	0.1	4
78	Effect of Building Position on Phase Distribution in Co-Cr-Mo Alloy Additive Manufactured by Electron-Beam Melting. Materials Transactions, 2016, 57, 2041-2047.	0.4	18
79	Submicron lamellar porous structure formed by selective dissolution of Ti-Al alloy. Materials and Design, 2016, 98, 1-11.	3.3	25
80	Modeling dynamic recrystallization of L-605 cobalt superalloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 653, 84-92.	2.6	15
81	Developing high strength and ductility in biomedical Co–Cr cast alloys by simultaneous doping with nitrogen and carbon. Acta Biomaterialia, 2016, 31, 435-447.	4.1	29
82	Uneven damage on head and liner contact surfaces of a retrieved Co–Cr-based metal-on-metal hip joint bearing: An important reason for the high failure rate. Materials Science and Engineering C, 2016, 62, 532-543.	3.8	14
83	Characterisation of nanoscale carbide precipitation in as-cast Co–Cr–W-based dental alloys. Journal of Materials Chemistry B, 2016, 4, 1778-1786.	2.9	9
84	Preventing high-temperature oxidation of Co–Cr-based dental alloys by boron doping. Journal of Materials Chemistry B, 2016, 4, 309-317.	2.9	9
85	Manufacturing of high-strength Ni-free Co–Cr–Mo alloy rods via cold swaging. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 38-47.	1.5	18
86	Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 656, 39-46.	2.6	144
87	Cold-rolling behavior of biomedical Ni-free Co–Cr–Mo alloys: Role of strain-induced ε martensite and its intersecting phenomena. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 55, 201-214.	1.5	23
88	In-situ fabrication and characterization of ultrafine structured Cu–TiC composites with high strength and high conductivity by mechanical milling. Journal of Alloys and Compounds, 2016, 657, 122-132.	2.8	95
89	Superthermostability of nanoscale TIC-reinforced copper alloys manufactured by a two-step ball-milling process. Philosophical Magazine, 2015, 95, 4035-4053.	0.7	17
90	Strengthening of biomedical Ni-free Co–Cr–Mo alloy by multipass "low-strain-per-pass― thermomechanical processing. Acta Biomaterialia, 2015, 28, 215-224.	4.1	23

#	Article	IF	CITATIONS
91	Analysis of the Fracture Mechanism of Ti-6Al-4V Alloy Rods That Failed Clinically After Spinal Instrumentation Surgery. Spine, 2015, 40, E767-E773.	1.0	36
92	First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials. Materials Letters, 2015, 159, 12-15.	1.3	133
93	Effect of carbon on the microstructure, mechanical properties and metal ion release of Ni-free Co–Cr–Mo alloys containing nitrogen. Materials Science and Engineering C, 2015, 55, 145-154.	3.8	23
94	Texture evolution and mechanical anisotropy of biomedical hot-rolled Co–Cr–Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 51, 205-214.	1.5	7
95	Assessment of precipitation behavior in dental castings of a Co–Cr–Mo alloy. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 50, 268-276.	1.5	32
96	Surface characterisation of Ni-free Co–Cr–W-based dental alloys exposed to high temperatures and the effects of adding silicon. Corrosion Science, 2015, 94, 411-419.	3.0	26
97	Effects of Carbon Addition on Mechanical Properties and Microstructures of Ni-Free Co–Cr–W-Based Dental Alloys. , 2015, , 225-236.		1
98	Preparation of weak-textured commercially pure titanium by electron beam melting. Additive Manufacturing, 2015, 8, 105-109.	1.7	41
99	Regulating the coarsening of the $\hat{I}^3 \hat{e}^2$ phase in superalloys. NPG Asia Materials, 2015, 7, e212-e212.	3.8	52
100	Effects of microstructures on the sliding behavior of hot-pressed CoCrMo alloys. Wear, 2014, 319, 200-210.	1.5	29
101	Phase decomposition in biomedical Co–29Cr–6Mo–0.2N alloy during isothermal heat treatment at 1073K. Journal of Alloys and Compounds, 2014, 590, 411-416.	2.8	30
102	Dynamic recrystallization of a biomedical Co–Cr–W-based alloy under hot deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 592, 173-181.	2.6	40
103	Effects of carbon concentration on microstructure and mechanical properties of as-cast nickel-free Co–28Cr–9W-based dental alloys. Materials Science and Engineering C, 2014, 40, 127-134.	3.8	36
104	Effects of nitrogen addition on microstructure and mechanical behavior of biomedical Co–Cr–Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 29, 417-426.	1.5	73
105	Local strain evolution due to athermal γ→ε martensitic transformation in biomedical Co Cr Mo alloys. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 52-61.	1.5	57
106	Development of new Co–Cr–W-based biomedical alloys: Effects of microalloying and thermomechanical processing on microstructures and mechanical properties. Materials & Design, 2014, 55, 987-998.	5.1	72
107	Influence of two-step ball-milling condition on electrical and mechanical properties of TiC-dispersion-strengthened Cu alloys. Materials & Design, 2014, 64, 441-449.	5.1	48
108	Role of strain-induced martensitic transformation on extrusion and intrusion formation during fatigue deformation of biomedical Co–Cr–Mo–N alloys. Acta Materialia, 2014, 81, 377-385.	3.8	35

#	Article	IF	CITATIONS
109	Effects of sigma phase and carbide on the wear behavior of CoCrMo alloys in Hanks' solution. Wear, 2014, 310, 51-62.	1.5	69
110	Refinement of solidification microstructures by carbon addition in biomedical Co–28Cr–9W–1Si alloys. Materials Letters, 2014, 116, 82-85.	1.3	25
111	Effects of nitrogen on microstructural evolution of biomedical Co–Cr–W alloys during hot deformation and subsequent cooling. Materials & Design, 2014, 57, 421-425.	5.1	18
112	Effect of cold rolling on phase decomposition in biomedical Co–29Cr–6Mo–0.2N alloy during isothermal heat treatment at 1073 K. Journal of Alloys and Compounds, 2014, 612, 273-279.	2.8	18
113	Influence of carbon addition on mechanical properties and microstructures of Ni-free Co–Cr–W alloys subjected to thermomechanical processing. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 37, 274-285.	1.5	29
114	Nanoarchitectured Co–Cr–Mo orthopedic implant alloys: Nitrogen-enhanced nanostructural evolution and its effect on phase stability. Acta Biomaterialia, 2013, 9, 6259-6267.	4.1	86
115	Strain-induced martensitic transformation near twin boundaries in a biomedical Co–Cr–Mo alloy with negative stacking fault energy. Acta Materialia, 2013, 61, 1648-1661.	3.8	140
116	Dynamic Strain Aging in Biomedical Co–Cr–Mo-Based Alloys with Nitrogen Doping. Key Engineering Materials, 2012, 508, 141-145.	0.4	1
117	Nitrogen-induced dynamic strain aging in a biomedical-grade Co–Cr–Mo alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 552, 69-75.	2.6	10
118	Enhanced Mechanical Properties of As-Forged Co-Cr-Mo-N Alloys with Ultrafine-Grained Structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 5243-5257.	1.1	58
119	Origin of Significant Grain Refinement in Co-Cr-Mo Alloys Without Severe Plastic Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 4875-4887.	1.1	48
120	Microstructures and Mechanical Properties of Biomedical Co-29Cr-6Mo-0.14N Alloys Processed by Hot Rolling. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3108-3119.	1.1	35
121	Mechanical properties of as-forged Ni-free Co–29Cr–6Mo alloys with ultrafine-grained microstructure. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 5961-5966.	2.6	71
122	Evolution of cold-rolled microstructures of biomedical Co-Cr-Mo alloys with and without N doping. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 614-621.	2.6	73
123	Compensation for Friction and Temperature Increase Due to Adiabatic Heating duringHot Compression Testing and Construction of ^ ^ldquo;Processing Map^ ^rdquo; of BiomedicalCo-29Cr-6Mo-0.16N Alloy. Journal of the Japan Society for Technology of Plasticity, 2010, 51, 221-226.	0.0	3
124	Ultrafine Grain Refinement of Biomedical Co-29Cr-6Mo Alloy during Conventional Hot-Compression Deformation. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1980-1994.	1.1	111
125	Solidification behavior of falling germanium droplets produced by pulsated orifice ejection method. Journal of Crystal Growth, 2008, 310, 2915-2922.	0.7	21
126	Nitrogen-Enhanced Nanostructural Evolution and its Effect on Phase Stability in Biomedical Co-Cr-Mo Alloys. Advanced Materials Research, 0, 922, 826-831.	0.3	0

#	Article	IF	CITATIONS
127	Non-Equilibrium Solidification Behavior With Solute Trapping Associated With Powder Characteristics During Electron Beam Additive Manufacturing. SSRN Electronic Journal, 0, , .	0.4	1
128	Grain Morphology and Texture Development in a Co-Cr-Mo Alloy Fabricated by Powder Bed Fusion with an Electron Beam. SSRN Electronic Journal, 0, , .	0.4	1
129	Influence of Interatomic Interactions on the Mechanical Properties of Face-Centered Cubic Multicomponent Co-Ni-Cr-Mo Alloys. SSRN Electronic Journal, 0, , .	0.4	Ο
130	Preparation of High-Strength Co-Cr-Mo Alloy Rods Via Hot-Caliber Rolling. SSRN Electronic Journal, 0, , .	0.4	0