
Eun Gyo Jeong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982442/publications.pdf Version: 2024-02-01

FUN GYO LEONG

#	Article	IF	CITATIONS
1	Chitin Nanofiber Transparent Paper for Flexible Green Electronics. Advanced Materials, 2016, 28, 5169-5175.	21.0	213
2	Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond. Advanced Materials, 2020, 32, e1907539.	21.0	195
3	Textile-based washable polymer solar cells for optoelectronic modules: toward self-powered smart clothing. Energy and Environmental Science, 2019, 12, 1878-1889.	30.8	136
4	Weavable and Highly Efficient Organic Light-Emitting Fibers for Wearable Electronics: A Scalable, Low-Temperature Process. Nano Letters, 2018, 18, 347-356.	9.1	113
5	Highly Transparent and Flexible Organic Lightâ€Emitting Diodes with Structure Optimized for Anode/Cathode Multilayer Electrodes. Advanced Functional Materials, 2015, 25, 7145-7153.	14.9	90
6	A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. Journal of Information Display, 2020, 21, 19-32.	4.0	86
7	Recent Progress of Fiber Shaped Lighting Devices for Smart Display Applications—A Fibertronic Perspective. Advanced Materials, 2020, 32, e1903488.	21.0	81
8	Design of Highly Water Resistant, Impermeable, and Flexible Thin-Film Encapsulation Based on Inorganic/Organic Hybrid Layers. ACS Applied Materials & Interfaces, 2019, 11, 3251-3261.	8.0	68
9	Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis. RSC Advances, 2016, 6, 40835-40843.	3.6	64
10	Highly reliable hybrid nano-stratified moisture barrier for encapsulating flexible OLEDs. Organic Electronics, 2016, 33, 150-155.	2.6	51
11	A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale, 2017, 9, 6370-6379.	5.6	46
12	Multi-directionally wrinkle-able textile OLEDs for clothing-type displays. Npj Flexible Electronics, 2020, 4, .	10.7	41
13	Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics. ACS Applied Materials & Interfaces, 2017, 9, 16343-16350.	8.0	39
14	Reliable high temperature, high humidity flexible thin film encapsulation using Al2O3/MgO nanolaminates for flexible OLEDs. Nano Research, 2020, 13, 2716-2725.	10.4	31
15	Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. Npj Flexible Electronics, 2021, 5, .	10.7	27
16	Ultra-High-Resolution Organic Light-Emitting Diodes with Color Conversion Electrode. ACS Photonics, 2018, 5, 1891-1897.	6.6	11
17	Organic Lightâ€Emitting Diodes: Organic Lightâ€Emitting Diodes: Pushing Toward the Limits and Beyond (Adv. Mater. 35/2020). Advanced Materials, 2020, 32, 2070266.	21.0	8
18	A Flexible and Wavelengthâ€Designable Polymer Lightâ€Emitting Diode Employing Sandwichâ€Encapsulation for Wearable Skin Rejuvenation Photomedicine. Advanced Materials Interfaces, 2021, 8, 2100856.	3.7	7

Eun Gyo Jeong

#	Article	IF	CITATIONS
19	Pâ€129: Zeroâ€Stress Thinâ€film Encapsulation Method for Increasing the Intrinsic Stability of Flexible OLEDs. Digest of Technical Papers SID International Symposium, 2017, 48, 1746-1749.	0.3	4
20	Highly stable 2D material (2DM) field-effect transistors (FETs) with wafer-scale multidyad encapsulation. Nanotechnology, 2017, 28, 055203.	2.6	1
21	Encapsulation Technology for Flexible OLEDs. Series in Display Science and Technology, 2021, , 129-150.	0.6	1
22	Pâ€66: A Bilayer Encapsulation with High Chemical Stability in Harsh Environments for Environmentally Robust OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 1325-1328.	0.3	1
23	Review of OLED-based Wearable Display for Smart Textiles. Fashion & Textile Research Journal, 2021, 23, 860-868.	0.6	0