
Akio Adachi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982413/publications.pdf Version: 2024-02-01

Διο Δολομι

#	Article	lF	CITATIONS
1	The Human Immunodeficiency Virus Type 1 Accessory Protein Vpu Induces Apoptosis by Suppressing the Nuclear Factor κB–dependent Expression of Antiapoptotic Factors. Journal of Experimental Medicine, 2001, 194, 1299-1312.	8.5	139
2	Physiological significance of apoptosis in animal virus infection. Microbes and Infection, 2000, 2, 1111-1117.	1.9	130
3	Generation of HIV-1 derivatives that productively infect macaque monkey lymphoid cells. Proceedings of the United States of America, 2006, 103, 16959-16964.	7.1	111
4	Nef-Induced Major Histocompatibility Complex Class I Down-Regulation Is Functionally Dissociated from Its Virion Incorporation, Enhancement of Viral Infectivity, and CD4 Down-Regulation. Journal of Virology, 2000, 74, 2907-2912.	3.4	106
5	Paramyxovirus Sendai virus-like particle formation by expression of multiple viral proteins and acceleration of its release by C protein. Virology, 2004, 325, 1-10.	2.4	76
6	Vpx Is Critical for Reverse Transcription of the Human Immunodeficiency Virus Type 2 Genome in Macrophages. Journal of Virology, 2008, 82, 7752-7756.	3.4	73
7	Expression of HIV-1 accessory protein Vif is controlled uniquely to be low and optimal by proteasome degradation. Microbes and Infection, 2004, 6, 791-798.	1.9	69
8	Antiapoptotic activity of herpes simplex virus type 2: the role of US3 protein kinase gene. Microbes and Infection, 1999, 1, 601-607.	1.9	61
9	Persistent Infection with SIVmac Chimeric Virus Having <i>tat, rev, vpu, env</i> and <i>nef</i> of HIV Type 1 in Macaque Monkeys. AIDS Research and Human Retroviruses, 1994, 10, 1021-1029.	1.1	59
10	The HIV-1 Vpr displays strong anti-apoptotic activity. FEBS Letters, 1998, 432, 17-20.	2.8	59
11	Virus multiplication and induction of apoptosis by Sendai virus: role of the C proteins. Microbes and Infection, 2003, 5, 373-378.	1.9	59
12	Human Immunodeficiency Virus Type 1 Derivative with 7% Simian Immunodeficiency Virus Genetic Content Is Able To Establish Infections in Pig-Tailed Macaques. Journal of Virology, 2007, 81, 11549-11552.	3.4	59
13	High Level Expression of Human Immunodeficiency Virus Type-1 Vif Inhibits Viral Infectivity by Modulating Proteolytic Processing of the Gag Precursor at the p2/Nucleocapsid Processing Site. Journal of Biological Chemistry, 2004, 279, 12355-12362.	3.4	56
14	Identification of amino acid residues in HIV-1 Vif critical for binding and exclusion of APOBEC3G/F. Microbes and Infection, 2008, 10, 1142-1149.	1.9	53
15	Role of HIV-1 Vpu protein for virus spread and pathogenesis. Microbes and Infection, 2008, 10, 960-967.	1.9	52
16	Human Immunodeficiency Virus Vpx Is Required for the Early Phase of Replication in Peripheral Blood Mononuclear Cells. Microbiology and Immunology, 1994, 38, 871-878.	1.4	47
17	Small Amino Acid Changes in the V3 Loop of Human Immunodeficiency Virus Type 2 Determines the Coreceptor Usage for CXCR4 and CCR5. Virology, 1999, 264, 237-243.	2.4	47
18	Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells. Microbes and Infection, 2003, 5, 387-395.	1.9	43

#	Article	IF	CITATIONS
19	SIV/HIV Recombinants and Their Use in Studying Biological Properties. AIDS Research and Human Retroviruses, 1992, 8, 403-409.	1.1	42
20	PHYSIOLOGICAL SIGNIFICANCE OF APOPTOSIS DURING ANIMAL VIRUS INFECTION. International Reviews of Immunology, 2003, 22, 341-359.	3.3	42
21	Improved capacity of a monkey-tropic HIV-1 derivative to replicate in cynomolgus monkeys with minimal modifications. Microbes and Infection, 2011, 13, 58-64.	1.9	40
22	Generation of Rhesus Macaque-Tropic HIV-1 Clones That Are Resistant to Major Anti-HIV-1 Restriction Factors. Journal of Virology, 2013, 87, 11447-11461.	3.4	40
23	Modification of a loop sequence between α-helices 6 and 7 of virus capsid (CA) protein in a human immunodeficiency virus type 1 (HIV-1) derivative that has simian immunodeficiency virus (SIVmac239) vifand CA α-helices 4 and 5 loop improves replication in cynomolgus monkey cells. Retrovirology, 2009, 6. 70.	2.0	36
24	Commentary: Origin and evolution of pathogenic coronaviruses. Frontiers in Immunology, 2020, 11, 811.	4.8	36
25	Pseudotyping human immunodeficiency virus type 1 by vesicular stomatitis virus G protein does not reduce the cell-dependent requirement of Vif for optimal infectivity: functional difference between Vif and Nef. Journal of General Virology, 1999, 80, 2945-2949.	2.9	35
26	Comparative study on the structure and cytopathogenic activity of HIV Vpr/Vpx proteins. Microbes and Infection, 2006, 8, 10-15.	1.9	33
27	Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Reviews in Medical Virology, 2010, 20, 68-76.	8.3	33
28	Amino Acid Residues 88 and 89 in the Central Hydrophilic Region of Human Immunodeficiency Virus Type 1 Vif Are Critical for Viral Infectivity by Enhancing the Steady-State Expression of Vif. Journal of Virology, 2003, 77, 1626-1632.	3.4	31
29	Species barrier of HIVâ€1 and its jumping by virus engineering. Reviews in Medical Virology, 2008, 18, 261-275.	8.3	31
30	Suppression of apoptotic and necrotic cell death by poliovirus. Journal of General Virology, 2001, 82, 2965-2972.	2.9	31
31	Effects of SIVmac Infection on Peripheral Blood CD4+CD8+T Lymphocytes in Cynomolgus Macaques. Clinical Immunology, 1999, 91, 321-329.	3.2	30
32	Viral Tropism. Frontiers in Microbiology, 2012, 3, 281.	3.5	30
33	SAMHD1-Dependent and -Independent Functions of HIV-2/SIV Vpx Protein. Frontiers in Microbiology, 2012, 3, 297.	3.5	28
34	In silico Analysis of HIV-1 Env-gp120 Reveals Structural Bases for Viral Adaptation in Growth-Restrictive Cells. Frontiers in Microbiology, 2016, 7, 110.	3.5	28
35	Regulation of cell cycle and apoptosis by human immunodeficiency virus type 1 Vpr. Microbes and Infection, 2000, 2, 1011-1017.	1.9	27
36	Gag-CA Q110D mutation elicits TRIM5-independent enhancement ofÂHIV-1mt replication in macaque cells. Microbes and Infection, 2013, 15, 56-65.	1.9	27

#	Article	IF	CITATIONS
37	Induction of Apoptosis in Herpesvirus saimiri-Immortalized T Lymphocytes by Blocking Interaction of CD28 with CD80/CD86. Biochemical and Biophysical Research Communications, 1999, 263, 352-356.	2.1	26
38	Natural Single-Nucleotide Polymorphisms in the 3′ Region of the HIV-1 <i>pol</i> Gene Modulate Viral Replication Ability. Journal of Virology, 2014, 88, 4145-4160.	3.4	26
39	HIV-1 capsid mutants inhibit the replication of wild-type virus at both early and late infection phases. FEBS Letters, 1997, 415, 231-234.	2.8	25
40	Association between interleukin-6 gene polymorphism and human T-Cell leukemia virus type I associated myelopathy. Human Immunology, 2002, 63, 696-700.	2.4	25
41	Systemic biological analysis of the mutations in two distinct HIV-1mt genomes occurred during replication in macaque cells. Microbes and Infection, 2013, 15, 319-328.	1.9	24
42	PIM kinases facilitate lentiviral evasion from SAMHD1 restriction via Vpx phosphorylation. Nature Communications, 2019, 10, 1844.	12.8	22
43	Characterization of apoptosis induced by sorbitol: a unique system for the detection of antiapoptotic activities of viruses. Microbes and Infection, 2000, 2, 599-606.	1.9	21
44	Geographical, genetic and functional diversity of antiretroviral host factor TRIMCyp in cynomolgus macaque (Macaca fascicularis). Journal of General Virology, 2012, 93, 594-602.	2.9	21
45	Structural Dynamics of Retroviral Genome and the Packaging. Frontiers in Microbiology, 2011, 2, 264.	3.5	20
46	Interferon-Induced SCYL2 Limits Release of HIV-1 by Triggering PP2A-Mediated Dephosphorylation of the Viral Protein Vpu. Science Signaling, 2012, 5, ra73.	3.6	20
47	Role of HIV-1 Nef protein for virus replication in vitro. Microbes and Infection, 2010, 12, 65-70.	1.9	19
48	Generation and Characterization of a Host Cell-Dependent gag Gene Mutant of Human Immunodeficiency Virus Type 1. Virology, 1995, 212, 251-254.	2.4	17
49	Influence of cytokine and mannose binding protein gene polymorphisms on human t-cell leukemia virus type i (hTLV-i) provirus load in HTLV-I asymptomatic carriers. Human Immunology, 2003, 64, 453-457.	2.4	17
50	The Identification of a Small Molecule Compound That Reduces HIV-1 Nef-Mediated Viral Infectivity Enhancement. PLoS ONE, 2011, 6, e27696.	2.5	17
51	Acceleration of virus-induced apoptosis by tumor necrosis factor. FEBS Letters, 1998, 426, 179-182.	2.8	16
52	Natural Single-Nucleotide Variations in the HIV-1 Genomic SA1prox Region Can Alter Viral Replication Ability by Regulating Vif Expression Levels. Journal of Virology, 2016, 90, 4563-4578.	3.4	16
53	Inhibition of HIV Replication by Capsid Mutant C6b. Biochemical and Biophysical Research Communications, 1998, 242, 313-316.	2.1	15
54	Trans-species activation of human T cells by rhesus macaque CD1b molecules. Biochemical and Biophysical Research Communications, 2008, 377, 889-893.	2.1	15

#	Article	IF	CITATIONS
55	TRIM5 genotypes in cynomolgus monkeys primarily influence inter-individual diversity in susceptibility to monkey-tropic human immunodeficiency virus type 1. Journal of General Virology, 2013, 94, 1318-1324.	2.9	15
56	Functional Domain Mapping of HIV-1 Gag Proteins. Biochemical and Biophysical Research Communications, 1997, 241, 317-320.	2.1	14
57	Elimination of HIV-1 plasmid DNA from virus samples obtained from transfection by calcium–phosphate co-precipitation. Journal of Virological Methods, 2000, 90, 99-102.	2.1	14
58	Cyclophilin A-Independent Replication of a Human Immunodeficiency Virus Type 1 Isolate Carrying a Small Portion of the Simian Immunodeficiency Virus SIV MAC gag Capsid Region. Journal of Virology, 2001, 75, 10527-10531.	3.4	14
59	Status of APOBEC3G/F in cells and progeny virions modulated by Vif determines HIV-1 infectivity. Microbes and Infection, 2010, 12, 166-171.	1.9	14
60	Functional region mapping of HIV-2 Vpx protein. Microbes and Infection, 2008, 10, 1387-1392.	1.9	13
61	Rhesus M1.3S Cells Suitable for Biological Evaluation of Macaque-Tropic HIV/SIV Clones. Frontiers in Microbiology, 2011, 2, 115.	3.5	13
62	Poly-proline motif in HIV-2 Vpx is critical for its efficient translation. Journal of General Virology, 2014, 95, 179-189.	2.9	13
63	Susceptibility of HVS-immortalized lymphocytic HSC-F cells to various strains and mutants of HIV/SIV. International Journal of Molecular Medicine, 2003, 11, 641-4.	4.0	13
64	Subtle mutations in the cysteine region of HIV-1 Vif drastically alter the viral replication phenotype. Microbes and Infection, 2002, 4, 621-624.	1.9	12
65	Functional analysis of HIV-1 genes derived from Japanese long-term nonprogressors and progressors for AIDS. Microbes and Infection, 2004, 6, 799-805.	1.9	12
66	Unique characteristics of HIV-1 Vif expression. Microbes and Infection, 2005, 7, 385-390.	1.9	12
67	Comparison of an antiviral activity of recombinant consensus interferon with recombinant interferon-α-2b. Microbes and Infection, 1999, 1, 1073-1077.	1.9	11
68	Distinct combinations of amino acid substitutions in N-terminal domain of Gag-capsid afford HIV-1 resistance to rhesus TRIM5α. Microbes and Infection, 2014, 16, 936-944.	1.9	11
69	Novel In Vitro Screening System Based on Differential Scanning Fluorimetry to Search for Small Molecules against the Disassembly or Assembly of HIV-1 Capsid Protein. Frontiers in Microbiology, 2017, 8, 1413.	3.5	11
70	Toward Understanding Molecular Bases for Biological Diversification of Human Coronaviruses: Present Status and Future Perspectives. Frontiers in Microbiology, 2020, 11, 2016.	3.5	11
71	Early Function of HIV-1 Gag Proteins Is Cell-Dependent. Biochemical and Biophysical Research Communications, 1998, 248, 899-903.	2.1	10
72	Producer Cell-Dependent Requirement of the Nef Protein for Efficient Entry of HIV-1 into Cells. Biochemical and Biophysical Research Communications, 1998, 250, 565-568.	2.1	10

#	Article	IF	CITATIONS
73	Susceptibility of HVS-immortalized lymphocytic HSC-F cells to various strains and mutants of HIV/SIV. International Journal of Molecular Medicine, 2003, 11, 641.	4.0	10
74	Role of Us3 gene of herpes simplex virus type 1 for resistance to interferon International Journal of Molecular Medicine, 2004, 14, 641.	4.0	10
75	Macaque-Tropic HIV-1 Derivatives: A Novel Experimental Approach to Understand Viral Replication and Evolution in Vivo. , 0, , .		10
76	Species tropism of HIV-1 modulated by viral accessory proteins. Frontiers in Microbiology, 2012, 3, 267.	3.5	10
77	Cleavage of Gag precursor is required for early replication phase of HIV-1. FEBS Letters, 1997, 415, 227-230.	2.8	9
78	Animal model studies on viral infections. Frontiers in Microbiology, 2014, 5, 672.	3.5	9
79	Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker. Journal of Virology, 2019, 93, .	3.4	9
80	Novel mutant human immunodeficiency virus type 1 strains with high degree of resistance to cynomolgus macaque TRIMCyp generated by random mutagenesis. Journal of General Virology, 2016, 97, 963-976.	2.9	9
81	Generation and characterization of APOBEC3G-positive 293T cells for HIV-1 Vif study. Journal of Medical Investigation, 2007, 54, 154-158.	0.5	9
82	Growth ability in simian cells of monkey cell-tropic HIV-1 is greatly affected by downstream region of the vif gene. Journal of Medical Investigation, 2008, 55, 236-240.	0.5	9
83	Growth ability in various macaque cell lines of HIV-1 with simian cell-tropism. Journal of Medical Investigation, 2010, 57, 284-292.	0.5	9
84	Cell-dependent gag mutants of HIV-1 are crucially defective at the stage of uncoating/reverse transcription in non-permissive cells. Microbes and Infection, 2000, 2, 1419-1423.	1.9	8
85	Evasion from CypA- and APOBEC-mediated restrictions is insufficient for HIV-1 to efficiently grow in simian cells. Microbes and Infection, 2009, 11, 164-171.	1.9	8
86	Virology as biosystematics: towards understanding the viral infection biology. Frontiers in Microbiology, 2010, 1, 2.	3.5	8
87	Growth potentials of CCR5-tropic/CXCR4-tropic HIV-1mt clones in macaque cells. Frontiers in Microbiology, 2013, 4, 218.	3.5	8
88	Virological characterization of HIV-2 vpx gene mutants in various cell systems. Microbes and Infection, 2014, 16, 695-701.	1.9	8
89	Comparison of Biochemical Properties of HIV-1 and HIV-2 Capsid Proteins. Frontiers in Microbiology, 2017, 8, 1082.	3.5	8
90	Concomitant Enhancement of HIV-1 Replication Potential and Neutralization-Resistance in Concert With Three Adaptive Mutations in Env V1/C2/C4 Domains. Frontiers in Microbiology, 2019, 10, 2.	3.5	8

#	Article	IF	CITATIONS
91	Functional analysis of vif genes derived from various primate immunodeficiency viruses. Virus Genes, 1997, 14, 195-200.	1.6	7
92	Analysis of the cell-dependent replication potentials of human immunodeficiency virus type 1 vif mutants. Microbes and Infection, 2001, 3, 1093-1099.	1.9	7
93	Establishment of a biological assay system for human retroviral protease activity. Microbes and Infection, 2005, 7, 820-824.	1.9	7
94	Site-Directed Mutagenesis of HIV-1 vpu Gene Demonstrates Two Clusters of Replication-Defective Mutants with Distinct Ability to Down-Modulate Cell Surface CD4 and Tetherin. Frontiers in Microbiology, 2010, 1, 116.	3.5	7
95	Expression Profiles of Vpx/Vpr Proteins Are Co-related with the Primate Lentiviral Lineage. Frontiers in Microbiology, 2016, 7, 1211.	3.5	7
96	Production of HIV-1 vif mRNA Is Modulated by Natural Nucleotide Variations and SLSA1 RNA Structure in SA1D2prox Genomic Region. Frontiers in Microbiology, 2017, 8, 2542.	3.5	7
97	HIV-1 mutates to adapt in fluxing environments. Microbes and Infection, 2018, 20, 610-614.	1.9	7
98	CXCR4- and CCR5-Tropic HIV-1 Clones Are Both Tractable to Grow in Rhesus Macaques. Frontiers in Microbiology, 2018, 9, 2510.	3.5	7
99	Grand Challenge in Human/Animal Virology: Unseen, Smallest Replicative Entities Shape the Whole Globe. Frontiers in Microbiology, 2020, 11, 431.	3.5	7
100	Ultrasensitive and rapid enzyme immunoassay (thin aqueous layer immune complex transfer enzyme) Tj ETQq0	0 0 rgBT /	Overlock 10 T
101	Selective Expression of β7 Integrin on Lymphocytes Undergoing Apoptosis in Lymphoid Tissues. Biochemical and Biophysical Research Communications, 1998, 244, 578-582.	2.1	6
102	Lack of apoptosis in Sendai virus-infected HEp-2 cells without participation of viral antiapoptosis gene. Microbes and Infection, 2001, 3, 1115-1121.	1.9	6
103	Apparent lack of trans-dominant negative effects of various vif mutants on the replication of HIV-1. Microbes and Infection, 2002, 4, 1203-1207.	1.9	6
104	Construction of gag-chimeric viruses between HIV-1 and SIVmac that are capable of productive multi-cycle infection. Microbes and Infection, 2006, 8, 1075-1081.	1.9	6
105	Different interaction between HIV-1 Vif and its cellular target proteins APOBEC3G/APOBEC3F. Journal of Medical Investigation, 2010, 57, 89-94.	0.5	6
106	Phylogenetic Insights into the Functional Relationship between Primate Lentiviral Reverse Transcriptase and Accessory Proteins Vpx/Vpr. Frontiers in Microbiology, 2016, 7, 1655.	3.5	6
107	Editorial: Highly Mutable Animal RNA Viruses: Adaptation and Evolution. Frontiers in Microbiology, 2017, 8, 1785.	3.5	6
108	Generation and characterization of new CCR5-tropic HIV-1rmt clones. Journal of Medical Investigation, 2017, 64, 272-279.	0.5	6

#	Article	IF	CITATIONS
109	Suppression of HIV-2 Replication by HIV-1gagMutants. Biochemical and Biophysical Research Communications, 1998, 248, 418-421.	2.1	5
110	The Potential of Various HIV-1 Mutants to Inhibit the Replication of Wild-Type Virus. Biochemical and Biophysical Research Communications, 1998, 247, 349-352.	2.1	5
111	Growth characteristics of SHIV without the vpu gene. International Journal of Molecular Medicine, 2001, 8, 641-4.	4.0	5
112	Effects of lysine to arginine mutations in HIV-1 Vif on its expression and viral infectivity. International Journal of Molecular Medicine, 2006, 18, 679.	4.0	5
113	Species-Specific Valid Ternary Interactions of HIV-1 Env-gp120, CD4, and CCR5 as Revealed by an Adaptive Single-Amino Acid Substitution at the V3 Loop Tip. Journal of Virology, 2021, 95, e0217720.	3.4	5
114	Gag-Pol region determines the tropism of SIVagm for human cells. Virus Genes, 1998, 16, 137-139.	1.6	4
115	Host cell-dependent replication of HIV-1 mutants with deletions in gp41 cytoplasmic tail region is independent of the function of Vif. Microbes and Infection, 2000, 2, 1019-1023.	1.9	4
116	Replication potentials of vif variant viruses generated from monkey cell-tropic HIV-1 derivative clones NL-DT5/NL-DT5R. Microbes and Infection, 2008, 10, 1218-1222.	1.9	4
117	Structural Biology for Virus Research. Frontiers in Microbiology, 2012, 3, 91.	3.5	4
118	Virological characterization of HIVâ€1 CAâ€NTD mutants constructed in a virusâ€lineage reflected manner. Journal of Medical Investigation, 2018, 65, 110-115.	0.5	4
119	Expression Level of HIV-1 Vif Can Be Fluctuated by Natural Nucleotide Variations in the vif-Coding and Regulatory SA1D2prox Sequences of the Proviral Genome. Frontiers in Microbiology, 2019, 10, 2758.	3.5	4
120	Amino acid alterations in Gag that confer the ability to grow in simian cells on HIV-1 are located at a narrow CA region. Journal of Medical Investigation, 2009, 56, 21-25.	0.5	4
121	Comparative Analysis of Human and Macaque Monkey CD4: Differences in Formaldehyde Lability and Conformation Experimental Animals, 1998, 47, 23-27.	1.1	3
122	Role for Gag-CA Interdomain Linker in Primate Lentiviral Replication. Frontiers in Microbiology, 2019, 10, 1831.	3.5	3
123	The Fourth Major Restriction Factor Against HIV/SIV. Frontiers in Microbiology, 2011, 2, 132.	3.5	2
124	HIV-1 Nef impairs multiple T-cell functions in antigen-specific immune response in mice. International Immunology, 2011, 23, 433-441.	4.0	2
125	Role of poly-proline motif in HIV-2 Vpx expression. Frontiers in Microbiology, 2014, 5, 24.	3.5	2
126	Single-amino acid mutation 66SR in Gag-matrix enhances viral single-cycle infectivity of R5-tropic HIV-1rmt. Journal of Medical Investigation, 2015, 62, 228-232.	0.5	2

Ακιό Αδάςηι

#	Article	IF	CITATIONS
127	Frontiers in Virology: An Innovative Platform for Integrative Virus Research. Frontiers in Virology, 2021, 1, .	1.4	2
128	The Expression Level of HIV-1 Vif Is Optimized by Nucleotide Changes in the Genomic SA1D2prox Region during the Viral Adaptation Process. Viruses, 2021, 13, 2079.	3.3	2
129	Complete inhibition of SIVmac replication by its capsid mutants. Virus Genes, 1998, 17, 43-48.	1.6	1
130	Rapid formation of the immune complexes on solid phase in the immune complex transfer enzyme immunoassay for HIV-1 p24 antigen and antibody IgGs to HIV-1. , 1998, 12, 227-237.		1
131	Cell-dependent replication potentials of HIV-1 gag mutants. Microbes and Infection, 1999, 1, 671-676.	1.9	1
132	Generation and characterization of HIV-1 clones chimeric for subtypes B and C nef. International Journal of Molecular Medicine, 2004, 14, 1087.	4.0	1
133	Determination of HIV-1 infectivity by lymphocytic cell lines with integrated luciferase gene. International Journal of Molecular Medicine, 2004, 14, 1073.	4.0	1
134	Commentary on a New Era of Investigating 3D Structure-Based Human?Virus Protein Network Dynamics. Frontiers in Microbiology, 2011, 2, 186.	3.5	1
135	Complete Genome Sequences of Human Immunodeficiency Type 1 Viruses Genetically Engineered To Be Tropic for Rhesus Macaques. Genome Announcements, 2017, 5, .	0.8	1
136	Morphological study on biologically distinct vpx/vpr mutants of HIV-2. Journal of Medical Investigation, 2006, 53, 271-276.	0.5	1
137	Generation and characterization of HIV-1 clones chimeric for subtypes B and C nef. International Journal of Molecular Medicine, 2004, 14, 1087-90.	4.0	1
138	Preparations of recombinant HIV-1 p66 antigen to improve the specificity of immune complex transfer enzyme immunoassay of antibody IgG to HIV-1 reverse transcriptase. Journal of Clinical Laboratory Analysis, 2000, 14, 169-179.	2.1	0
139	HIV-1 Vpr and G2 cell cycle arrest. Future Microbiology, 2011, 6, 375-378.	2.0	0
140	Commentary: Derivation of Simian Tropic HIV-1 Infectious Clone Reveals Virus Adaptation to a New Host. Frontiers in Cellular and Infection Microbiology, 2020, 10, 235.	3.9	0
141	Special Issue "Cell, Organoid and Animal Models to Study Pathogenic Human RNA Viruses― Viruses, 2021, 13, 1943.	3.3	0
142	Growth properties of macaque-tropic HIV-1 clones carrying <i>vpr/vpx </i> genes derived from simian immunodeficiency viruses in place of their <i>vpr </i> regions. Journal of Medical Investigation, 2014, 61, 374-379.	0.5	0