Fabien L Condamine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982247/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Including fossils in phylogeny: a glimpse into the evolution of the superfamily Evanioidea (Hymenoptera: Apocrita) under tip-dating and the fossilized birth‪death process. Zoological Journal of the Linnean Society, 2022, 194, 1396-1423.	1.0	19
2	Phylogenomic and Macroevolutionary Evidence for an Explosive Radiation of a Plant Genus in the Miocene. Systematic Biology, 2022, 71, 589-609.	2.7	26
3	Pulled Diversification Rates, Lineages-Through-Time Plots, and Modern Macroevolutionary Modeling. Systematic Biology, 2022, 71, 758-773.	2.7	30
4	Mountain radiations are not only rapid and recent: Ancient diversification of South American frog and lizard families related to Paleogene Andean orogeny and Cenozoic climate variations. Global and Planetary Change, 2022, 208, 103704.	1.6	23
5	The Andes through time: evolution and distribution of Andean floras. Trends in Plant Science, 2022, 27, 364-378.	4.3	67
6	A new mid-Cretaceous fossil genus of stonefly (Plecoptera: Perlidae) from the Burmese amber. Cretaceous Research, 2022, 133, 105138.	0.6	2
7	Redescription of Litholingia rhora Ren, 2002 (Neuroptera: Grammolingiidae) from the Middle Jurassic of Daohugou. Palaeoentomology, 2022, 5, .	0.4	0
8	Impact of Pleistocene Eustatic Fluctuations on Evolutionary Dynamics in Southeast Asian Biodiversity Hotspots. Systematic Biology, 2021, 70, 940-960.	2.7	25
9	Antarctica as an evolutionary arena during the Cenozoic global cooling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	5
10	Dinosaur biodiversity declined well before the asteroid impact, influenced by ecological and environmental pressures. Nature Communications, 2021, 12, 3833.	5.8	33
11	Limited dispersal and in situ diversification drive the evolutionary history of Rasborinae fishes in Sundaland. Journal of Biogeography, 2021, 48, 2153-2173.	1.4	8
12	A new stonefly species (Plecoptera: Perlodidae) from Eocene Baltic amber and questions on the wing venation potential for species diagnostic of fossil Plecoptera. Palaeoentomology, 2021, 4, .	0.4	2
13	Evolutionary drivers, morphological evolution and diversity dynamics of a surviving mammal clade: cainotherioids at the Eocene–Oligocene transition. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210173.	1.2	4
14	Punctuational ecological changes rather than global factors drive species diversification and the evolution of wing phenotypes in <i>Morpho</i> butterflies. Journal of Evolutionary Biology, 2021, 34, 1592-1607.	0.8	9
15	Conserved ancestral tropical niche but different continental histories explain the latitudinal diversity gradient in brush-footed butterflies. Nature Communications, 2021, 12, 5717.	5.8	33
16	Genome-wide macroevolutionary signatures of key innovations in butterflies colonizing new host plants. Nature Communications, 2021, 12, 354.	5.8	43
17	Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution. Systematic Biology, 2020, 69, 38-60.	2.7	65
18	Are the Yellow and Red Marked Club-Tail Losaria coon the Same Species?. Insects, 2020, 11, 392.	1.0	3

FABIEN L CONDAMINE

#	Article	IF	CITATIONS
19	The rise of angiosperms pushed conifers to decline during global cooling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28867-28875.	3.3	79
20	An ancient tropical origin, dispersals via land bridges and Miocene diversification explain the subcosmopolitan disjunctions of the liverwort genus Lejeunea. Scientific Reports, 2020, 10, 14123.	1.6	12
21	Response to technical comment â€~A cautionary note for users of linear diversification dependencies'. Ecology Letters, 2020, 23, 1172-1174.	3.0	3
22	The role of the Neotropics as a source of world tetrapod biodiversity. Global Ecology and Biogeography, 2020, 29, 1565-1578.	2.7	15
23	Fossil and phylogenetic analyses reveal recurrent periods of diversification and extinction in dictyopteran insects. Cladistics, 2020, 36, 394-412.	1.5	16
24	Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient*. Evolution; International Journal of Organic Evolution, 2020, 74, 1966-1987.	1.1	55
25	Climate cooling and clade competition likely drove the decline of lamniform sharks. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20584-20590.	3.3	55
26	Assessing the causes of diversification slowdowns: temperatureâ€dependent and diversityâ€dependent models receive equivalent support. Ecology Letters, 2019, 22, 1900-1912.	3.0	101
27	The contribution of temperature and continental fragmentation to amphibian diversification. Journal of Biogeography, 2019, 46, 1857-1873.	1.4	17
28	Forest giants on different evolutionary branches: Ecomorphological convergence in helicopter damselflies*. Evolution; International Journal of Organic Evolution, 2019, 73, 1045-1054.	1.1	10
29	Genus delimitation, biogeography and diversification of <i>Choristoneura</i> Lederer (Lepidoptera:) Tj ETQq1 I	l 0.784314 1.7	1 rgBT /Overloo
30	Limited by the roof of the world: mountain radiations of Apollo swallowtails controlled by diversity-dependence processes. Biology Letters, 2018, 14, 20170622.	1.0	12
31	Convergent herbivory on conifers by Choristoneura moths after boreal forest formation. Molecular Phylogenetics and Evolution, 2018, 123, 35-43.	1.2	11
32	Mitochondrial phylogenomics, the origin of swallowtail butterflies, and the impact of the number of clocks in <scp>B</scp> ayesian molecular dating. Systematic Entomology, 2018, 43, 460-480.	1.7	34
33	When Darwin's Special Difficulty Promotes Diversification in Insects. Systematic Biology, 2018, 67, 873-887.	2.7	18
34	Testing the Role of the Red Queen and Court Jester as Drivers of the Macroevolution of Apollo Butterflies. Systematic Biology, 2018, 67, 940-964.	2.7	83
35	Opposite macroevolutionary responses to environmental changes in grasses and insects during the Neogene grassland expansion. Nature Communications, 2018, 9, 5089.	5.8	32
36	Amazonia is the primary source of Neotropical biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6034-6039.	3.3	352

FABIEN L CONDAMINE

#	Article	IF	CITATIONS
37	Ancient islands acted as refugia and pumps for conifer diversity. Cladistics, 2017, 33, 69-92.	1.5	33
38	Recent origin and rapid speciation of Neotropical orchids in the world's richest plant biodiversity hotspot. New Phytologist, 2017, 215, 891-905.	3.5	170
39	Diversification shifts in leafroller moths linked to continental colonization and the rise of angiosperms. Cladistics, 2017, 33, 449-466.	1.5	24
40	Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Molecular Ecology, 2017, 26, 6414-6429.	2.0	74
41	The latitudinal diversity gradient in New World swallowtail butterflies is caused by contrasting patterns of outâ€of―and intoâ€theâ€tropics dispersal. Global Ecology and Biogeography, 2017, 26, 1447-1458.	2.7	24
42	Andean Mountain Building Did not Preclude Dispersal of Lowland Epiphytic Orchids in the Neotropics. Scientific Reports, 2017, 7, 4919.	1.6	35
43	A first higher-level time-calibrated phylogeny of antlions (Neuroptera: Myrmeleontidae). Molecular Phylogenetics and Evolution, 2017, 107, 103-116.	1.2	30
44	The abiotic and biotic drivers of rapid diversification in <scp>A</scp> ndean bellflowers (Campanulaceae). New Phytologist, 2016, 210, 1430-1442.	3.5	325
45	<scp>RPANDA</scp> : an R package for macroevolutionary analyses on phylogenetic trees. Methods in Ecology and Evolution, 2016, 7, 589-597.	2.2	247
46	To what extent do new fossil discoveries change our understanding of clade evolution? A cautionary tale from burying beetles (Coleoptera: <i>Nicrophorus</i>). Biological Journal of the Linnean Society, 2016, 117, 686-704.	0.7	17
47	Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence?. Scientific Reports, 2016, 6, 19208.	1.6	110
48	Into the Andes: multiple independent colonizations drive montane diversity in the Neotropical clearwing butterflies Godyridina. Molecular Ecology, 2016, 25, 5765-5784.	2.0	52
49	Shotgun Mitogenomics Provides a Reference Phylogenetic Framework and Timescale for Living Xenarthrans. Molecular Biology and Evolution, 2016, 33, 621-642.	3.5	167
50	Deciphering the evolution of birdwing butterflies 150 years after Alfred Russel Wallace. Scientific Reports, 2015, 5, 11860.	1.6	47
51	Dispersal is a major driver of the latitudinal diversity gradient of <scp>C</scp> arnivora. Global Ecology and Biogeography, 2015, 24, 1059-1071.	2.7	46
52	Out of Himalaya: the impact of past Asian environmental changes on the evolutionary and biogeographical history of Dipodoidea (Rodentia). Journal of Biogeography, 2015, 42, 856-870.	1.4	57
53	Islands as model systems in ecology and evolution: prospects fifty years after MacArthurâ€Wilson. Ecology Letters, 2015, 18, 200-217.	3.0	356
54	Historical species losses in bumblebee evolution. Biology Letters, 2015, 11, 20141049.	1.0	19

FABIEN L CONDAMINE

#	Article	IF	CITATIONS
55	Origin and diversification of living cycads: a cautionary tale on the impact of the branching process prior in Bayesian molecular dating. BMC Evolutionary Biology, 2015, 15, 65.	3.2	189
56	Role of <scp>C</scp> aribbean Islands in the diversification and biogeography of Neotropical <i><scp>H</scp>eraclides</i> swallowtails. Cladistics, 2015, 31, 291-314.	1.5	30
57	Unveiling the Diversification Dynamics of Australasian Predaceous Diving Beetles in the Cenozoic. Systematic Biology, 2015, 64, 3-24.	2.7	40
58	Faster Speciation and Reduced Extinction in the Tropics Contribute to the Mammalian Latitudinal Diversity Gradient. PLoS Biology, 2014, 12, e1001775.	2.6	279
59	Integrative taxonomy of New Caledonian beetles: species delimitation and definition of the Uloma isoceroides species group (Coleoptera, Tenebrionidae, Ulomini), with the description of four new species. ZooKeys, 2014, 415, 133-167.	0.5	9
60	Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family. BMC Evolutionary Biology, 2014, 14, 220.	3.2	50
61	Higher level molecular phylogeny of darkling beetles (<scp>C</scp> oleoptera:) Tj ETQq1 1 0.784314 rgBT /Overl	ock 10 Tf	50,502 Td (
62	Fineâ€scale biogeographical and temporal diversification processes of peacock swallowtails (<i>Papilio</i> subgenus <i>Achillides</i>) in the Indoâ€Australian Archipelago. Cladistics, 2013, 29, 88-111.	1.5	43
63	Macroevolutionary perspectives to environmental change. Ecology Letters, 2013, 16, 72-85.	3.0	222
64	Global biogeographical pattern of swallowtail diversification demonstrates alternative colonization routes in the Northern and Southern hemispheres. Journal of Biogeography, 2013, 40, 9-23.	1.4	62
65	Diversification patterns and processes of wingless endemic insects in the Mediterranean Basin: historical biogeography of the genus <i>Blaps</i> (Coleoptera: Tenebrionidae). Journal of Biogeography, 2013, 40, 1899-1913.	1.4	25
66	Disentangling dispersal, vicariance and adaptive radiation patterns: A case study using armyworms in the pest genus Spodoptera (Lepidoptera: Noctuidae). Molecular Phylogenetics and Evolution, 2012, 65, 855-870.	1.2	82
67	Biogeographic and diversification patterns of Neotropical Troidini butterflies (Papilionidae) support a museum model of diversity dynamics for Amazonia. BMC Evolutionary Biology, 2012, 12, 82.	3.2	46
68	What causes latitudinal gradients in species diversity? Evolutionary processes and ecological constraints on swallowtail biodiversity. Ecology Letters, 2012, 15, 267-277.	3.0	222
69	Palaeoenvironmental Shifts Drove the Adaptive Radiation of a Noctuid Stemborer Tribe (Lepidoptera,) Tj ETQq1 1	0,784314 1.1	4 rgβT /Over
70	New insights on systematics and phylogenetics of Mediterranean <i>Blaps</i> species (Coleoptera: Tenebrionidae: Blaptini), assessed through morphology and dense taxon sampling. Systematic Entomology, 2011, 36, 340-361.	1.7	22
71	A phylogenetic study to assess the link between biome specialisation and diversification in swallowtail butterflies. Global Change Biology, 0, , .	4.2	2