
Mohammad Mehrali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/798220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and numerical analysis of thermal performance of shape stabilized PCM in a solar thermal collector. Case Studies in Thermal Engineering, 2022, 30, 101706.	5.7	12
2	Progress of experimental studies on compact integrated solar collector-storage retrofits adopting phase change materials. Solar Energy, 2022, 237, 62-95.	6.1	15
3	Highly hydrophobic silanized melamine foam for facile and uniform assembly of graphene nanoplatelet towards efficient light-to-thermal energy storage. Materials Today Energy, 2022, 28, 101077.	4.7	10
4	Simultaneous solar-thermal energy harvesting and storage via shape stabilized salt hydrate phase change material. Chemical Engineering Journal, 2021, 405, 126624.	12.7	102
5	Synthesis, properties, and biomedical applications of alginate methacrylate (ALMA)-based hydrogels: Current advances and challenges. Applied Materials Today, 2021, 24, 101150.	4.3	29
6	Calcium-Silicate-Incorporated Gellan-Chitosan Induced Osteogenic Differentiation in Mesenchymal Stromal Cells. Polymers, 2021, 13, 3211.	4.5	11
7	2D titanoniobate-titaniumcarbide nanohybrid anodes for ultrafast lithium-ion batteries. Journal of Power Sources, 2021, 512, 230523.	7.8	5
8	Parametric study on the thermal performance enhancement of a thermosyphon heat pipe using covalent functionalized graphene nanofluids. Applied Thermal Engineering, 2020, 175, 115385.	6.0	41
9	Heat Transfer and Entropy Generation Abilities of MWCNTs/GNPs Hybrid Nanofluids in Microtubes. Entropy, 2019, 21, 480.	2.2	57
10	Pectin Methacrylate (PEMA) and Gelatin-Based Hydrogels for Cell Delivery: Converting Waste Materials into Biomaterials. ACS Applied Materials & Interfaces, 2019, 11, 12283-12297.	8.0	61
11	Adsorption capability of heavy metals by chitosan/poly(ethylene oxide)/activated carbon electrospun nanofibrous membrane. Journal of Applied Polymer Science, 2018, 135, 45851.	2.6	63
12	Flexible Bioelectronics: Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future (Adv. Sci. 10/2018). Advanced Science, 2018, 5, 1870059.	11.2	1
13	Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. Advanced Science, 2018, 5, 1700931.	11.2	83
14	Full-spectrum volumetric solar thermal conversion via graphene/silver hybrid plasmonic nanofluids. Applied Energy, 2018, 224, 103-115.	10.1	150
15	Incorporation of Human-Platelet-Derived Growth Factor-BB Encapsulated Poly(lactic- <i>co</i> -glycolic acid) Microspheres into 3D CORAGRAF Enhances Osteogenic Differentiation of Mesenchymal Stromal Cells. ACS Applied Materials & Interfaces, 2017, 9, 9291-9303.	8.0	15
16	Influence of quadrupole magnetic field on mass transfer in an extraction column in the presence of MnFe 2 O 4 nanoparticles. Journal of Molecular Liquids, 2017, 238, 145-154.	4.9	22
17	Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field. Applied Thermal Engineering, 2017, 114, 415-427.	6.0	56
18	Hot-pressed geopolymer. Cement and Concrete Research, 2017, 100, 14-22.	11.0	84

Mohammad Mehrali

#	Article	IF	CITATIONS
19	Thermal performance enhancement of an evacuated tube solar collector using graphene nanoplatelets nanofluid. Journal of Cleaner Production, 2017, 162, 121-129.	9.3	149
20	Thermal performance of a compact design heat pipe solar collector with latent heat storage in charging/discharging modes. Energy, 2017, 127, 101-115.	8.8	60
21	Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field. Powder Technology, 2017, 308, 149-157.	4.2	123
22	Experiment on forced convective heat transfer enhancement using MWCNTs/GNPs hybrid nanofluid and mini-tube. International Journal of Heat and Mass Transfer, 2017, 115, 1121-1131.	4.8	75
23	A Comprehensive Study of the Polypropylene Fiber Reinforced Fly Ash Based Geopolymer. PLoS ONE, 2016, 11, e0147546.	2.5	118
24	Investigation of heat transfer performance and friction factor of a counter-flow double-pipe heat exchanger using nitrogen-doped, graphene-based nanofluids. International Communications in Heat and Mass Transfer, 2016, 76, 16-23.	5.6	179
25	Effect of nitrogen-doped graphene nanofluid on the thermal performance of the grooved copper heat pipe. Energy Conversion and Management, 2016, 118, 459-473.	9.2	87
26	From rice husk to high performance shape stabilized phase change materials for thermal energy storage. RSC Advances, 2016, 6, 45595-45604.	3.6	35
27	Effects of carbon doping on the microstructural, micro/nano-mechanical, and mesenchymal stromal cells biocompatibility and osteogenic differentiation properties of alumina. Ceramics International, 2016, 42, 18247-18256.	4.8	9
28	An ecofriendly graphene-based nanofluid for heat transfer applications. Journal of Cleaner Production, 2016, 137, 555-566.	9.3	72
29	Evaluation of viscosity and thermal conductivity of graphene nanoplatelets nanofluids through a combined experimental–statistical approach using respond surface methodology method. International Communications in Heat and Mass Transfer, 2016, 79, 74-80.	5.6	63
30	A comprehensive review on graphene nanofluids: Recent research, development and applications. Energy Conversion and Management, 2016, 111, 466-487.	9.2	253
31	Experimental investigation of the effect of graphene nanofluids on heat pipe thermal performance. Applied Thermal Engineering, 2016, 100, 775-787.	6.0	115
32	Experimental investigation of thermophysical properties, entropy generation and convective heat transfer for a nitrogen-doped graphene nanofluid in a laminar flow regime. Advanced Powder Technology, 2016, 27, 717-727.	4.1	43
33	High tensile strength fly ash based geopolymer composite using copper coated micro steel fiber. Construction and Building Materials, 2016, 112, 629-638.	7.2	116
34	Electrophoretic deposition of calcium silicate–reduced graphene oxide composites on titanium substrate. Journal of the European Ceramic Society, 2016, 36, 319-332.	5.7	67
35	Heat transfer and entropy generation for laminar forced convection flow of graphene nanoplatelets nanofluids in a horizontal tube. International Communications in Heat and Mass Transfer, 2015, 66, 23-31.	5.6	84
36	Investigation on the use of graphene oxide as novel surfactant to stabilize weakly charged graphene nanoplatelets. Nanoscale Research Letters, 2015, 10, 212.	5.7	77

Mohammad Mehrali

#	Article	IF	CITATIONS
37	Fabrication and Performances of Microencapsulated Palmitic Acid with Enhanced Thermal Properties. Energy & Fuels, 2015, 29, 1010-1018.	5.1	52
38	Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	41
39	Graphene nanoplatelet-fly ash based geopolymer composites. Cement and Concrete Research, 2015, 76, 222-231.	11.0	250
40	Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids. Experimental Thermal and Fluid Science, 2015, 68, 100-108.	2.7	103
41	Highly dispersed reduced graphene oxide and its hybrid complexes as effective additives for improving thermophysical property of heat transfer fluid. International Journal of Heat and Mass Transfer, 2015, 87, 284-294.	4.8	31
42	Facile synthesis and thermal performances of stearic acid/titania core/shell nanocapsules by sol–gel method. Energy, 2015, 85, 635-644.	8.8	76
43	Experimental investigation on the use of reduced graphene oxide and its hybrid complexes in improving closed conduit turbulent forced convective heat transfer. Experimental Thermal and Fluid Science, 2015, 66, 290-303.	2.7	47
44	One-Step Preparation of Form-Stable Phase Change Material through Self-Assembly of Fatty Acid and Graphene. Journal of Physical Chemistry C, 2015, 119, 22787-22796.	3.1	118
45	Theoretical model of an evacuated tube heat pipe solar collector integrated with phase change material. Energy, 2015, 91, 911-924.	8.8	78
46	A state-of-the-art review on hybrid heat pipe latent heat storage systems. Energy Conversion and Management, 2015, 105, 1178-1204.	9.2	84
47	An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions. International Journal of Heat and Mass Transfer, 2015, 81, 41-51.	4.8	109
48	Mechanical and In Vitro Biological Performance of Graphene Nanoplatelets Reinforced Calcium Silicate Composite. PLoS ONE, 2014, 9, e106802.	2.5	53
49	Facile Preparation of Carbon Microcapsules Containing Phase-Change Material with Enhanced Thermal Properties. Scientific World Journal, The, 2014, 2014, 1-5.	2.1	9
50	Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets. Nanoscale Research Letters, 2014, 9, 15.	5.7	341
51	A comprehensive literature review of bio-fuel performance in internal combustion engine and relevant costs involvement. Renewable and Sustainable Energy Reviews, 2014, 30, 29-44.	16.4	126
52	Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrasonics Sonochemistry, 2014, 21, 735-742.	8.2	60
53	Effect of carbon nanospheres on shape stabilization and thermal behavior of phase change materials for thermal energy storage. Energy Conversion and Management, 2014, 88, 206-213.	9.2	78
54	Experimental Investigation of Convective Heat Transfer Using Graphene Nanoplatelet Based Nanofluids under Turbulent Flow Conditions. Industrial & Engineering Chemistry Research, 2014, 53, 12455-12465.	3.7	88

#	Article	IF	CITATIONS
55	Preparation of nitrogen-doped graphene/palmitic acid shape stabilized composite phase change material with remarkable thermal properties for thermal energy storage. Applied Energy, 2014, 135, 339-349.	10.1	134
56	Preparation, characterization, viscosity, and thermal conductivity of nitrogen-doped graphene aqueous nanofluids. Journal of Materials Science, 2014, 49, 7156-7171.	3.7	108
57	Synthesis, Mechanical Properties, and in Vitro Biocompatibility with Osteoblasts of Calcium Silicate–Reduced Graphene Oxide Composites. ACS Applied Materials & Interfaces, 2014, 6, 3947-3962.	8.0	153
58	Chitosan (PEO)/bioactive glass hybrid nanofibers for bone tissue engineering. RSC Advances, 2014, 4, 49144-49152.	3.6	59
59	Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material. Applied Thermal Engineering, 2013, 61, 633-640.	6.0	222
60	A comprehensive review of bio-diesel as alternative fuel for compression ignition engines. Renewable and Sustainable Energy Reviews, 2013, 28, 410-424.	16.4	81
61	Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method. Energy, 2013, 61, 664-672.	8.8	204
62	Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite. Energy Conversion and Management, 2013, 67, 275-282.	9.2	306
63	Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage. Materials, 2013, 6, 1608-1620.	2.9	83
64	Investigation of interfacial damping nanotube-based composite. Composites Part B: Engineering, 2013, 50, 354-361.	12.0	38
65	Preparation and properties of highly conductive palmitic acid/graphene oxide composites as thermal energy storage materials. Energy, 2013, 58, 628-634.	8.8	130
66	Dental implants from functionally graded materials. Journal of Biomedical Materials Research - Part A, 2013, 101, 3046-3057.	4.0	105
67	Comparison of nanostructured nickel zinc ferrite and magnesium copper zinc ferrite prepared by water-in-oil microemulsion. Electronic Materials Letters, 2012, 8, 639-642.	2.2	5