Xiao-Shun Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature, 2010, 464, 392-395.	13.7	3,025
2	Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nature Communications, 2011, 2, 305.	5.8	227
3	Direct <i>In Situ</i> Raman Spectroscopic Evidence of Oxygen Reduction Reaction Intermediates at High-Index Pt(<i>hkl</i>) Surfaces. Journal of the American Chemical Society, 2020, 142, 715-719.	6.6	154
4	Inâ€situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angewandte Chemie - International Edition, 2019, 58, 16062-16066.	7.2	135
5	Do Molecular Conductances Correlate with Electrochemical Rate Constants? Experimental Insights. Journal of the American Chemical Society, 2011, 133, 7509-7516.	6.6	114
6	Multichannel Conductance of Folded Singleâ€Molecule Wires Aided by Throughâ€Space Conjugation. Angewandte Chemie - International Edition, 2015, 54, 4231-4235.	7.2	92
7	Controlling and Observing Sharp-Valleyed Quantum Interference Effect in Single Molecular Junctions. Journal of the American Chemical Society, 2018, 140, 17685-17690.	6.6	84
8	Electrical conductance study on 1,3-butadiyne-linked dinuclear ruthenium(ii) complexes within single molecule break junctions. Chemical Science, 2013, 4, 2471.	3.7	81
9	Extending the Capability of STM Break Junction for Conductance Measurement of Atomic-Size Nanowires: An Electrochemical Strategy. Journal of the American Chemical Society, 2008, 130, 13228-13230.	6.6	65
10	Probing Interfacial Electronic and Catalytic Properties on Wellâ€Defined Surfaces by Using Inâ€Situ Raman Spectroscopy. Angewandte Chemie - International Edition, 2018, 57, 11257-11261.	7.2	60
11	Remarkable Multichannel Conductance of Novel Single-Molecule Wires Built on Through-Space Conjugated Hexaphenylbenzene. Nano Letters, 2018, 18, 4200-4205.	4.5	55
12	Core–shell nanoparticle based SERS from hydrogen adsorbed on a rhodium(111) electrode. Chemical Communications, 2011, 47, 2023.	2.2	54
13	Single Molecule Conductance of Dipyridines with Conjugated Ethene and Nonconjugated Ethane Bridging Group. Journal of Physical Chemistry C, 2008, 112, 3935-3940.	1.5	52
14	Synthesis and Characterization of Gold Nanoparticles Coated with Ultrathin and Chemically Inert Dielectric Shells for SHINERS Applications. Applied Spectroscopy, 2011, 65, 620-626.	1.2	52
15	Single Molecule Conductance of Carboxylic Acids Contacting Ag and Cu Electrodes. Journal of Physical Chemistry C, 2012, 116, 21699-21705.	1.5	51
16	Plasmonic Core–Shell Nanomaterials and their Applications in Spectroscopies. Advanced Materials, 2021, 33, e2005900.	11.1	50
17	Triggered Excited-State Intramolecular Proton Transfer Fluorescence for Selective Triplex DNA Recognition. Analytical Chemistry, 2015, 87, 11620-11624.	3.2	46
18	Transient electrochemistry: beyond simply temporal resolution. Chemical Communications, 2016, 52, 251-263	2.2	42

#	Article	IF	CITATIONS
19	Electrochemically Assisted Fabrication of Metal Atomic Wires and Molecular Junctions by MCBJ and STMâ€BJ Methods. ChemPhysChem, 2010, 11, 2745-2755.	1.0	38
20	An electrochemical jump-to-contact STM-break junction approach to construct single molecular junctions with different metallic electrodes. Electrochemistry Communications, 2011, 13, 407-410.	2.3	36
21	Enhancing electron transport in molecular wires by insertion of a ferrocene center. Physical Chemistry Chemical Physics, 2014, 16, 2260.	1.3	36
22	Achieving Efficient Multichannel Conductance in Throughâ€ S pace Conjugated Singleâ€Molecule Parallel Circuits. Angewandte Chemie - International Edition, 2020, 59, 4581-4588.	7.2	36
23	The Creation of Nanostructures on an Au(111) Electrode by Tipâ€Induced Iron Deposition from an Ionic Liquid. Small, 2008, 4, 1355-1358.	5.2	33
24	Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules. Journal of Physical Chemistry Letters, 2021, 12, 758-763.	2.1	33
25	Conductance measurement of carboxylic acids binding to palladium nanoclusters by electrochemical jump-to-contact STM break junction. Electrochimica Acta, 2014, 123, 205-210.	2.6	31
26	Giant Single-Molecule Anisotropic Magnetoresistance at Room Temperature. Journal of the American Chemical Society, 2015, 137, 5923-5929.	6.6	31
27	Probing Interfacial Electronic Effects on Singleâ€Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie - International Edition, 2021, 60, 15452-15458.	7.2	31
28	Tunneling Decay Constant of Alkanedicarboxylic Acids: Different Dependence on the Metal Electrodes between Air and Electrochemistry. Journal of Physical Chemistry C, 2014, 118, 18756-18761.	1.5	26
29	Inâ€situ Spectroscopic Insight into the Origin of the Enhanced Performance of Bimetallic Nanocatalysts towards the Oxygen Reduction Reaction (ORR). Angewandte Chemie, 2019, 131, 16208-16212.	1.6	26
30	An STM Study on Nonionic Fluorosurfactant Zonyl FSN Self-Assembly on Au(111): Large Domains, Few Defects, and Good Stability. Langmuir, 2008, 24, 13245-13249.	1.6	22
31	Single-Molecule Sensing of Interfacial Acid–Base Chemistry. Journal of Physical Chemistry Letters, 2020, 11, 10023-10028.	2.1	20
32	Unique Metal Cation Recognition via Crown Ether-Derivatized Oligo(phenyleneethynylene) Molecular Junction. Journal of Physical Chemistry C, 2020, 124, 8496-8503.	1.5	20
33	Influence of Molecular Structure on Contact Interaction between Thiophene Anchoring Group and Au Electrode. Journal of Physical Chemistry C, 2017, 121, 1472-1476.	1.5	19
34	Probing Interfacial Electronic and Catalytic Properties on Wellâ€Defined Surfaces by Using Inâ€Situ Raman Spectroscopy. Angewandte Chemie, 2018, 130, 11427-11431.	1.6	19
35	Conductance measurement of pyridyl-based single molecule junctions with Cu and Au contacts. Nanotechnology, 2013, 24, 465204.	1.3	18
36	Conductance of alkyl-based molecules with one, two and three chains measured by electrochemical STM break junction. Electrochemistry Communications, 2014, 45, 83-86.	2.3	18

#	Article	IF	CITATIONS
37	G-Quadruplex DNA with an Apurinic Site as a Soft Molecularly Imprinted Sensing Platform. Analytical Chemistry, 2018, 90, 5552-5556.	3.2	17
38	Supramolecularly Multicolor DNA Decoding Using an Indicator Competition Assay. Analytical Chemistry, 2018, 90, 13183-13187.	3.2	16
39	Mechanically Induced Switching between Two Discrete Conductance States: A Potential Single-Molecule Variable Resistor. ACS Applied Materials & Interfaces, 2021, 13, 57646-57653.	4.0	16
40	Precise tuning of single molecule conductance in an electrochemical environment. Nanoscale, 2018, 10, 7026-7032.	2.8	15
41	Modulating electron transport through single-molecule junctions by heteroatom substitution. Journal of Materials Chemistry C, 2020, 8, 6826-6831.	2.7	15
42	z-Piezo Pulse-Modulated STM Break Junction: Toward Single-Molecule Rectifiers with Dissimilar Metal Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 8656-8663.	4.0	15
43	Specific G-quadruplex structure recognition of human telomeric RNA over DNA by a fluorescently activated hyperporphyrin. Analyst, The, 2015, 140, 5169-5175.	1.7	14
44	Detecting Electron Transport of Amino Acids by Using Conductance Measurement. Sensors, 2017, 17, 811.	2.1	14
45	Self-Assembly of a Rh(I) Complex on Au(111) Surfaces and Its Electrocatalytic Activity toward the Hydrogen Evolution Reaction. Langmuir, 2007, 23, 6819-6826.	1.6	13
46	Fluorescently Sensing of DNA Triplex Assembly Using an Isoquinoline Alkaloid as Selector, Stabilizer, Inducer, and Switchâ€On Emitter. Chemistry - an Asian Journal, 2016, 11, 2041-2048.	1.7	13
47	Polarity inversion sensitized G-quadruplex metal sensors with K+ tolerance. Biosensors and Bioelectronics, 2019, 145, 111703.	5.3	13
48	Improving Gating Efficiency of Electron Transport through Redoxâ€Active Molecular Junctions with Conjugated Chains. ChemElectroChem, 2020, 7, 1337-1341.	1.7	13
49	Quantum interference effect of single-molecule conductance influenced by insertion of different alkyl length. Electrochemistry Communications, 2016, 68, 86-89.	2.3	12
50	Aggregation/dispersion conversion of hypericin by noncanonically structured DNA and a fluorescent Ba2+ sensor. Sensors and Actuators B: Chemical, 2017, 247, 19-25.	4.0	12
51	Prototropically Allosteric Probe for Superbly Selective DNA Analysis. Analytical Chemistry, 2017, 89, 9299-9306.	3.2	12
52	Adaptively Recognizing Parallel-Stranded Duplex Structure for Fluorescent DNA Polarity Analysis. Analytical Chemistry, 2017, 89, 8604-8608.	3.2	12
53	Low Tunneling Decay of Iodine-Terminated Alkane Single-Molecule Junctions. Nanoscale Research Letters, 2018, 13, 121.	3.1	12
54	Electrochemical performance of microdisc-shaped carbon-coated lithium iron phosphate with preferentially exposed (010) planes in lithium sulfate aqueous solution. Electrochimica Acta, 2015, 158, 342-347.	2.6	11

#	Article	IF	CITATIONS
55	Recognition of DNA abasic site nanocavity by fluorophore-switched probe: Suitable for all sequence environments. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 153, 645-650.	2.0	11
56	Correlating conductance and structure of silver nano-contacts created by jump-to-contact STM break junction. Journal of Electroanalytical Chemistry, 2013, 688, 257-261.	1.9	10
57	Revealing Supramolecular Interactions and Electron Transport in Single Molecular Junctions of Cucurbit[<i>n</i>]uril. Advanced Electronic Materials, 2021, 7, 2100399.	2.6	10
58	Single-molecule anisotropic magnetoresistance at room temperature: Influence of molecular structure. Electrochimica Acta, 2021, 389, 138760.	2.6	10
59	Structuring polarity-inverted TBA to G-quadruplex for selective recognition of planarity of natural isoquinoline alkaloids. Analyst, The, 2018, 143, 4907-4914.	1.7	9
60	Visualizing an Electrochemically Induced Radical Cation of Bipyridine at Au(111)/Ionic Liquid Interfaces toward a Single-Molecule Switch. Analytical Chemistry, 2022, 94, 1823-1830.	3.2	9
61	Stretching single atom contacts at multiple subatomic step-length. Physical Chemistry Chemical Physics, 2013, 15, 12459.	1.3	8
62	Single-molecule conductance with nitrile and amino contacts with Ag or Cu electrodes. Electrochimica Acta, 2015, 174, 340-344.	2.6	7
63	Capability of ds-DNA duplex structure in growing fluorescent silver nanoclusters. Journal of Luminescence, 2016, 179, 550-554.	1.5	7
64	Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines, 2018, 9, 234.	1.4	7
65	Gâ€Quadruplexâ€Based Photooxidase Driven by Visible Light. ChemCatChem, 2020, 12, 169-174.	1.8	7
66	Constructing Dual-Molecule Junctions to Probe Intermolecular Crosstalk. ACS Applied Materials & Interfaces, 2020, 12, 30584-30590.	4.0	7
67	A simple facet-based method for single crystal electrochemical study. Electrochemistry Communications, 2007, 9, 2716-2720.	2.3	6
68	Single-molecule conductance of dipyridines binding to Ag electrodes measured by electrochemical scanning tunneling microscopy break junction. Nanoscale Research Letters, 2014, 9, 77.	3.1	6
69	The binding sites of carboxylic acid group contacting to Cu electrode. Electrochemistry Communications, 2015, 59, 48-51.	2.3	6
70	Comparative Study on Single-Molecule Junctions of Alkane- and Benzene-Based Molecules with Carboxylic Acid/Aldehyde as the Anchoring Groups. Nanoscale Research Letters, 2016, 11, 380.	3.1	6
71	Electrochemically activated carbon–halogen bond cleavage and C–C coupling monitored by <i>in situ</i> shell-isolated nanoparticle-enhanced Raman spectroscopy. Analyst, The, 2022, 147, 1341-1347.	1.7	6
72	In Situ Raman Monitoring of Potential-Dependent Adlayer Structures on the Au(111)/Ionic Liquid Interface. Langmuir, 2022, 38, 6209-6216.	1.6	6

#	Article	IF	CITATIONS
73	Target-switched triplex nanotweezer and synergic fluorophore translocation for highly selective melamine assay. Mikrochimica Acta, 2019, 186, 42.	2.5	5
74	Achieving Efficient Multichannel Conductance in Throughâ€Space Conjugated Singleâ€Molecule Parallel Circuits. Angewandte Chemie, 2020, 132, 4611-4618.	1.6	5
75	Temperature-Dependent Tunneling in Furan Oligomer Single-Molecule Junctions. ACS Sensors, 2021, 6, 565-572.	4.0	5
76	Controlling Contact Configuration of Carboxylic Acid-Based Molecular Junctions Through Side Group. Nanoscale Research Letters, 2019, 14, 253.	3.1	4
77	A catalytic triplex DNAzyme for porphyrin metalation. Chemical Communications, 2021, 57, 6499-6502.	2.2	4
78	Influence of a Coordinated Metal Center on Charge Transport through a Series of Porphyrin Molecular Junctions. Journal of Physical Chemistry C, 2022, 126, 1168-1175.	1.5	4
79	Tuning the binding configurations of single-molecule junctions by molecular co-assembly. Chemical Communications, 2022, 58, 4962-4965.	2.2	3
80	Gold atomic contact: Electron conduction in the presence of interfacial charge transfer. Electrochemistry Communications, 2014, 47, 41-44.	2.3	2
81	Metalloenzyme-mimic innate G-quadruplex DNAzymes using directly coordinated metal ions as active centers. Dalton Transactions, 2020, 49, 13160-13166.	1.6	2
82	Selectively recognizing extrahelical conformations of DNA trinucleotide repeats by a hydroxylated porphyrin ligand. Analytica Chimica Acta, 2022, 1190, 339265.	2.6	2
83	Exploration of Metal-Molecule interaction of subnanometric heterogeneous catalysts via simulated Raman spectrum. Applied Surface Science, 2022, 579, 152194.	3.1	2
84	Conductance Measurement of Pyrazine Molecular Junction with Cu and Ag Electrodes. Journal of Nanoscience and Nanotechnology, 2018, 18, 2085-2088.	0.9	1
85	Comparative Study of Single Molecular Junctions with Para-Phthalic Acid and Meta-Phthalic Acid Binding to Different Metal Electrodes. Journal of Nanoscience and Nanotechnology, 2019, 19, 2794-2798.	0.9	1
86	G-quadruplex apurinic site-programmed chiral cyanine assemblies for specifically recognizing guanosine and guanine. Analyst, The, 2021, 146, 5866-5872.	1.7	1
87	Probing Interfacial Electronic Effects on Singleâ€Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie, 2021, 133, 15580-15586.	1.6	1
88	Single-Molecule Junction Conductance of Terephthalic Acid Contacting Ag and Cu Electrodes Measured by an Electrochemical Method. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 105-110.	2.2	1
89	Substituent-mediated quantum interference toward a giant single-molecule conductance variation. Nanotechnology, 2022, 33, 095201.	1.3	1
00	Electrochemistry to record single events SDP Electrochemistry 0 1 22	0.7	0

90 Electrochemistry to record single events. SPR Electrochemistry, 0, , 1-33.

0.7 0

#	Article	IF	CITATIONS
91	Adsorption of Metal-Organic Complex Molecule on Au(111) Surface. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2005, 21, 949-951.	2.2	0
92	Stimuliâ€Responsive and Reversible Nanoassemblies of Gâ€Triplexes. ChemBioChem, 2021, , .	1.3	0