Baile Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7982058/publications.pdf Version: 2024-02-01

RALLE ZHANC

#	Article	IF	CITATIONS
1	Topological Acoustics. Physical Review Letters, 2015, 114, 114301.	2.9	963
2	Acoustic higher-order topological insulator on a kagome lattice. Nature Materials, 2019, 18, 108-112.	13.3	603
3	Terahertz topological photonics for on-chip communication. Nature Photonics, 2020, 14, 446-451.	15.6	449
4	Topologically protected refraction of robust kink states in valley photonic crystals. Nature Physics, 2018, 14, 140-144.	6.5	355
5	Electrically pumped topological laser with valley edge modes. Nature, 2020, 578, 246-250.	13.7	341
6	Ultrathin Three-Dimensional Thermal Cloak. Physical Review Letters, 2014, 112, 054301.	2.9	340
7	Realization of a three-dimensional photonic topological insulator. Nature, 2019, 565, 622-626.	13.7	254
8	Probing topological protection using a designer surface plasmon structure. Nature Communications, 2016, 7, 11619.	5.8	210
9	Performing optical logic operations by a diffractive neural network. Light: Science and Applications, 2020, 9, 59.	7.7	171
10	Realization of an Acoustic Third-Order Topological Insulator. Physical Review Letters, 2019, 122, 244301.	2.9	160
11	Ab initio study of electronic and optical behavior of two-dimensional silicon carbide. Journal of Materials Chemistry C, 2013, 1, 2131.	2.7	148
12	All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene–boron nitride heterostructures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6717-6721.	3.3	144
13	Acoustic non-Hermitian skin effect from twisted winding topology. Nature Communications, 2021, 12, 6297.	5.8	125
14	Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains. Physical Review Letters, 2016, 117, 224301.	2.9	119
15	Valley surface-wave photonic crystal and its bulk/edge transport. Physical Review B, 2017, 96, .	1.1	119
16	Observation of an acoustic octupole topological insulator. Nature Communications, 2020, 11, 2442.	5.8	117
17	Spoof Plasmonics: From Metamaterial Concept to Topological Description. Advanced Materials, 2018, 30, e1706683.	11.1	111
18	Topologically enhanced harmonic generation in a nonlinear transmission line metamaterial. Nature Communications, 2019, 10, 1102.	5.8	95

#	Article	lF	CITATIONS
19	Circuit implementation of a four-dimensional topological insulator. Nature Communications, 2020, 11, 2356.	5.8	90
20	Topological triply degenerate point with double Fermi arcs. Nature Physics, 2019, 15, 645-649.	6.5	89
21	Controlling Cherenkov angles with resonance transition radiation. Nature Physics, 2018, 14, 816-821.	6.5	88
22	Experimental Observation of Superscattering. Physical Review Letters, 2019, 122, 063901.	2.9	88
23	Non-Hermitian route to higher-order topology in an acoustic crystal. Nature Communications, 2021, 12, 1888.	5.8	79
24	Splashing transients of 2D plasmons launched by swift electrons. Science Advances, 2017, 3, e1601192.	4.7	69
25	Topological Anderson Insulator in Disordered Photonic Crystals. Physical Review Letters, 2020, 125, 133603.	2.9	66
26	Multifrequency Superscattering from Subwavelength Hyperbolic Structures. ACS Photonics, 2018, 5, 1506-1511.	3.2	63
27	Topological Valley Photonics: Physics and Device Applications. Advanced Photonics Research, 2021, 2, 2100013.	1.7	63
28	Engineering Valley Polarization of Monolayer WS ₂ : A Physical Doping Approach. Small, 2019, 15, e1805503.	5.2	62
29	Valleyâ€Hall Photonic Topological Insulators with Dualâ€Band Kink States. Advanced Optical Materials, 2019, 7, 1900036.	3.6	61
30	Non-Hermitian Dirac Cones. Physical Review Letters, 2020, 124, 236403.	2.9	61
31	Observation of a topological nodal surface and its surface-state arcs in an artificial acoustic crystal. Nature Communications, 2019, 10, 5185.	5.8	59
32	Broadband surface-wave transformation cloak. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7635-7638.	3.3	58
33	Photonic amorphous topological insulator. Light: Science and Applications, 2020, 9, 133.	7.7	58
34	Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal. Physical Review B, 2020, 101, .	1.1	58
35	Valley Kink States and Topological Channel Intersections in Substrateâ€Integrated Photonic Circuitry. Laser and Photonics Reviews, 2019, 13, 1900159.	4.4	57
36	Controlling photonic spin Hall effect via exceptional points. Physical Review B, 2019, 100, .	1.1	55

#	Article	IF	CITATIONS
37	Superlight inverse Doppler effect. Nature Physics, 2018, 14, 1001-1005.	6.5	54
38	Groupâ€Velocity ontrolled and Gateâ€īunable Directional Excitation of Polaritons in Grapheneâ€Boron Nitride Heterostructures. Laser and Photonics Reviews, 2018, 12, 1800049.	4.4	51
39	Ideal Unconventional Weyl Point in a Chiral Photonic Metamaterial. Physical Review Letters, 2020, 125, 143001.	2.9	51
40	Chiral Plasmons with Twisted Atomic Bilayers. Physical Review Letters, 2020, 125, 077401.	2.9	51
41	Observation of an unpaired photonic Dirac point. Nature Communications, 2020, 11, 1873.	5.8	51
42	Acoustic valley edge states in a graphene-like resonator system. Journal of Applied Physics, 2018, 123, .	1.1	48
43	Observation of Photonic Antichiral Edge States. Physical Review Letters, 2020, 125, 263603.	2.9	47
44	Time-periodic corner states from Floquet higher-order topology. Nature Communications, 2022, 13, 11.	5.8	47
45	Electrodynamics of transformation-based invisibility cloaking. Light: Science and Applications, 2012, 1, e32-e32.	7.7	46
46	Strain-Induced Gauge Field and Landau Levels in Acoustic Structures. Physical Review Letters, 2017, 118, 194301.	2.9	46
47	Localized spoof surface plasmons in textured open metal surfaces. Optics Letters, 2016, 41, 2181.	1.7	45
48	Observation of Protected Photonic Edge States Induced by Real-Space Topological Lattice Defects. Physical Review Letters, 2020, 124, 243602.	2.9	44
49	Topological water wave states in a one-dimensional structure. Scientific Reports, 2016, 6, 29202.	1.6	41
50	Dispersion-tunable designer-plasmonic resonator with enhanced high-order resonances. Optics Express, 2015, 23, 6896.	1.7	40
51	Ab initio optical study of graphene on hexagonal boron nitride and fluorographene substrates. Journal of Materials Chemistry C, 2013, 1, 1618.	2.7	39
52	Transformation-Invariant Metamaterials. Physical Review Letters, 2019, 123, 067701.	2.9	39
53	Projectively Enriched Symmetry and Topology in Acoustic Crystals. Physical Review Letters, 2022, 128, 116802.	2.9	39
54	Atomically thin nonreciprocal optical isolation. Scientific Reports, 2014, 4, 4190.	1.6	38

#	Article	IF	CITATIONS
55	Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nature Communications, 2019, 10, 4226.	5.8	38
56	Invisibility Dips of Nearâ€Field Energy Transport in a Spoof Plasmonic Metadimer. Advanced Functional Materials, 2016, 26, 8307-8312.	7.8	37
57	Image reconstruction through a multimode fiber with a simple neural network architecture. Scientific Reports, 2021, 11, 896.	1.6	37
58	Vertical transport of subwavelength localized surface electromagnetic modes. Laser and Photonics Reviews, 2015, 9, 571-576.	4.4	36
59	Broadband enhancement of on-chip single-photon extraction via tilted hyperbolic metamaterials. Applied Physics Reviews, 2020, 7, 021403.	5.5	36
60	Polarization Shaping of Freeâ€Electron Radiation by Gradient Bianisotropic Metasurfaces. Laser and Photonics Reviews, 2021, 15, 2000426.	4.4	36
61	Observation of Dislocation-Induced Topological Modes in a Three-Dimensional Acoustic Topological Insulator. Physical Review Letters, 2021, 127, 214301.	2.9	35
62	SUPERSCATTERING OF LIGHT IN REFRACTIVE-INDEX NEAR-ZERO ENVIRONMENTS. Progress in Electromagnetics Research, 2020, 168, 15-23.	1.6	34
63	Ideal type-II Weyl points in topological circuits. National Science Review, 2021, 8, nwaa192.	4.6	34
64	Higher-order Dirac semimetal in a photonic crystal. Physical Review B, 2022, 105, .	1.1	33
65	Forward/Backward Switching of Plasmonic Wave Propagation Using Signâ€Reversal Coupling. Advanced Materials, 2017, 29, 1700018.	11.1	31
66	Vortex states in an acoustic Weyl crystal with a topological lattice defect. Nature Communications, 2021, 12, 3654.	5.8	31
67	Broadband Negative Refraction of Highly Squeezed Hyperbolic Polaritons in 2D Materials. Research, 2018, 2018, 2532819.	2.8	31
68	Guiding, bending, and splitting of coupled defect surface modes in a surface-wave photonic crystal. Applied Physics Letters, 2016, 108, 041105.	1.5	30
69	Complementary structure for designer localized surface plasmons. Applied Physics Letters, 2015, 107, .	1.5	29
70	Demonstration of topological wireless power transfer. Science Bulletin, 2021, 66, 974-980.	4.3	29
71	Surface Dyakonov–Cherenkov radiation. ELight, 2022, 2, .	11.9	29
72	Nonlocality Induced Cherenkov Threshold. Laser and Photonics Reviews, 2020, 14, 2000149.	4.4	27

#	Article	IF	CITATIONS
73	Caustic graphene plasmons with Kelvin angle. Physical Review B, 2015, 92, .	1.1	26
74	Design, implementation, and extension of thermal invisibility cloaks. AIP Advances, 2015, 5, .	0.6	25
75	Confined transverse electric phonon polaritons in hexagonal boron nitrides. 2D Materials, 2018, 5, 015018.	2.0	25
76	Topological slow light via coupling chiral edge modes with flatbands. Applied Physics Letters, 2021, 118, .	1.5	25
77	Type-I hyperbolic metasurfaces for highly-squeezed designer polaritons with negative group velocity. Nature Communications, 2019, 10, 2002.	5.8	24
78	A Brewster route to Cherenkov detectors. Nature Communications, 2021, 12, 5554.	5.8	24
79	Topological refraction in dual-band valley sonic crystals. Physical Review B, 2021, 103, .	1.1	23
80	Observation of Topological Edge States in Thermal Diffusion. Advanced Materials, 2022, 34, .	11.1	22
81	Deep-subwavelength magnetic-coupling-dominant interaction among magnetic localized surface plasmons. Physical Review B, 2016, 93, .	1.1	21
82	Optical bistability in a nonlinear-shell-coated metallic nanoparticle. Scientific Reports, 2016, 6, 21741.	1.6	21
83	Tunable excitonic emission of monolayer WS2 for the optical detection of DNA nucleobases. Nano Research, 2018, 11, 1744-1754.	5.8	20
84	Multi-directional plasmonic surface-wave splitters with full bandwidth isolation. Applied Physics Letters, 2016, 108, .	1.5	19
85	High-order spoof localized surface plasmons supported on a complementary metallic spiral structure. Scientific Reports, 2016, 6, 24447.	1.6	18
86	Topology-Controlled Photonic Cavity Based on the Near-Conservation of the Valley Degree of Freedom. Physical Review Letters, 2020, 125, 213902.	2.9	18
87	Fermi-Arc-Induced Vortex Structure in Weyl Beam Shifts. Physical Review Letters, 2019, 122, 066602.	2.9	17
88	Toggling Nearâ€Field Directionality via Polarization Control of Surface Waves. Laser and Photonics Reviews, 2021, 15, 2000388.	4.4	17
89	Invisibility cloaks from forward design to inverse design. Science China Information Sciences, 2013, 56, 1-11.	2.7	16
90	Flexible Photonic Topological Insulator. Advanced Optical Materials, 2018, 6, 1800532.	3.6	16

#	Article	IF	CITATIONS
91	Aperiodic Metagratings for Highâ€Performance Multifunctional Acoustic Lenses. Advanced Materials Technologies, 2020, 5, 2000542.	3.0	16
92	Realization of deep subwavelength resolution with singular media. Scientific Reports, 2015, 4, 5212.	1.6	15
93	Frequency-selective propagation of localized spoof surface plasmons in a graded plasmonic resonator chain. Scientific Reports, 2016, 6, 25576.	1.6	15
94	Normal Doppler Frequency Shift in Negative Refractiveâ€Index Systems. Laser and Photonics Reviews, 2019, 13, 1900081.	4.4	15
95	Confined transverse-electric graphene plasmons in negative refractive-index systems. Npj 2D Materials and Applications, 2020, 4, .	3.9	15
96	Interferenceless Polarization Splitting Through Nanoscale van der Waals Heterostructures. Physical Review Applied, 2018, 10, .	1.5	14
97	Demonstration of negative refraction induced by synthetic gauge fields. Science Advances, 2021, 7, eabj2062.	4.7	13
98	Realizing type-II Weyl points in an optical lattice. Physical Review B, 2017, 95, .	1.1	12
99	Antichiral edge states in an acoustic resonator lattice with staggered air flow. Journal of Applied Physics, 2021, 129, .	1.1	11
100	Non-Hermitian topological systems with eigenvalues that are always real. Physical Review B, 2022, 105,	1.1	11
101	Electromagnetic Detection of a Perfect Carpet Cloak. Scientific Reports, 2015, 5, 10401.	1.6	10
102	Directing Cherenkov photons with spatial nonlocality. Nanophotonics, 2020, 9, 3435-3442.	2.9	10
103	Three-dimensional photonic topological insulator without spin–orbit coupling. Nature Communications, 2022, 13, .	5.8	9
104	Amplification of quantum signals by the non-Hermitian skin effect. Physical Review B, 2022, 106, .	1.1	9
105	A metamaterial-free fluid-flow cloak. National Science Review, 2022, 9, .	4.6	8
106	Spin Momentum–Locked Surface States in Metamaterials without Topological Transition. Laser and Photonics Reviews, 2018, 12, 1800002.	4.4	7
107	Giant Enhancement of Unconventional Photon Blockade in a Dimer Chain. Physical Review Letters, 2021, 127, 240402.	2.9	7
108	Topological phase transition induced by gain and loss in a photonic Chern insulator. Physical Review A, 2022, 105, .	1.0	7

#	Article	IF	CITATIONS
109	Negative refraction of ultra-squeezed in-plane hyperbolic designer polaritons. Photonics Research, 2021, 9, 1540.	3.4	5
110	Phaseâ€preserved macroscopic visibleâ€light carpet cloaking beyond two dimensions. Laser and Photonics Reviews, 2015, 9, 399-404.	4.4	4
111	A conformal transformation approach to wide-angle illusion device and absorber. Nanophotonics, 2020, 9, 3243-3249.	2.9	4
112	Subwavelength wave manipulation in a thin surface-wave bandgap crystal. Optics Letters, 2018, 43, 50.	1.7	3
113	Metamaterials: Giant Asymmetric Radiation from an Ultrathin Bianisotropic Metamaterial (Adv. Sci.) Tj ETQq1 1	0.784314	rgBJT /Overloo
114	Deterministic and Scalable Generation of Exciton Emitters in 2D Semiconductor Nanodisks. Advanced Optical Materials, 2022, 10, .	3.6	3
115	Waveguide design and application with transformation optics. Science China Information Sciences, 2013, 56, 1-11.	2.7	2
116	Experimental demonstration of broadband reflectionless diffraction-free electromagnetic wave routing. Physical Review B, 2016, 94, .	1.1	2
117	Resolution criteria in double-slit microscopic imaging experiments. Scientific Reports, 2016, 6, 33764.	1.6	2
118	Experimental demonstration of Fabry-Perot open resonators in a surface-wave bandgap crystal. Applied Physics Letters, 2017, 111, .	1.5	2
119	Audible Landau levels. Nature Physics, 2019, 15, 307-308.	6.5	2
120	Mode-selective single-dipole excitation and controlled routing of guided waves in a multi-mode topological waveguide. Applied Physics Letters, 2022, 120, .	1.5	2
121	Transformation cloaks for surface electromagnetic waves. , 2015, , .		1
122	Implementation of the GRIN solid immersion lens. , 2012, , .		0
123	Large scale cylindrical cloak in free space without superluminal propagation. , 2012, , .		0
124	Translation and Rotation of Transformation Media under Electromagnetic Pulse. Scientific Reports, 2016, 6, 28346.	1.6	0
125	Revisit Cherenkov Radiation in the Hyperbolic Metamaterials. , 2019, , .		0
126	Non-Hermitian and time-modulated topological sound. , 2021, , .		0

#	Article	IF	CITATIONS
127	Some topological phases for sound. , 2018, , 25-48.		0