
Darya L Gurina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981911/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Properties of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/Polycaprolactone Polymer Mixtures Reinforced by Cellulose Nanocrystals: Experimental and Simulation Studies. Polymers, 2022, 14, 340.	4.5	7
2	Polylactide nanoparticle impregnation with carbamazepine in supercritical media and its subsequent release in liquid solvents: insights from molecular simulation. Journal of Molecular Liquids, 2022, 352, 118758.	4.9	4
3	Experimental and computational investigation of polylactic acid/silverâ€NPÂnanocomposite with antimicrobial activity prepared by plasma in liquid. Plasma Processes and Polymers, 2021, 18, 2000169.	3.0	12
4	Influence of the number and type of functional groups on self-diffusion of some aromatic compounds in acetone: Nuclear magnetic resonance and molecular dynamics simulations. Journal of Molecular Liquids, 2021, 326, 115230.	4.9	4
5	A molecular insight into poly(methyl methacrylate) impregnation with mefenamic acid in supercritical carbon dioxide: A computational simulation. Journal of Molecular Liquids, 2021, 337, 116424.	4.9	4
6	Interactions in solvent–polycaprolactone–cellulose nanocrystals–polyvinyl pyrrolidone system: Experiment and molecular dynamics simulation. Journal of Molecular Liquids, 2021, 341, 117409.	4.9	6
7	Dissolving power of the binary solvent carbon tetrachloride – methanol. Solubility of caffeine: Experiment, ASL model, and MD simulation. Journal of Molecular Liquids, 2021, 344, 117736.	4.9	5
8	Impregnation of Poly(methyl methacrylate) with Carbamazepine in Supercritical Carbon Dioxide: Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2020, 124, 8410-8417.	2.6	12
9	Hydrogen-bonded complexes protocatechualdehyde - acetone in carbon tetrachloride: NMR-spectroscopy and molecular dynamics simulation. Journal of Molecular Liquids, 2020, 309, 113124.	4.9	4
10	Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals. Nanomaterials, 2020, 10, 1256.	4.1	9
11	Quantum chemical and molecular dynamics modeling of interaction of isomolecular dipeptides of α-l-alanyl-α-l-alanine and β-alanyl-β-alanine with sodium dodecyl sulfate micelles. Computational and Theoretical Chemistry, 2020, 1182, 112844.	2.5	7
12	Features of Structural Solvation of Methylxanthines in Carbon Tetrachloride–Methanol Binary Mixtures: Molecular Dynamics Simulation. Russian Journal of Physical Chemistry A, 2019, 93, 75-80.	0.6	2
13	Water Effects on Molecular Adsorption of Poly(N-vinyl-2-pyrrolidone) on Cellulose Nanocrystals Surfaces: Molecular Dynamics Simulations. Materials, 2019, 12, 2155.	2.9	11
14	Hydrogen-Bonded Complexes of p-Hydrobenzoic Acid and Its Derivatives with a Polar Cosolvent in Supercritical Carbon Dioxide. Russian Journal of Physical Chemistry A, 2019, 93, 865-872.	0.6	0
15	Hydroxycinnamic acids in supercritical carbon dioxide. The dependence of cosolvent-induced solubility enhancement on the selective solvation. Journal of Supercritical Fluids, 2019, 150, 94-102.	3.2	4
16	The self-diffusion of parabens (methyl-, propylparaben) and tetramethylsilane in the binary solvent carbon tetrachloride – Co-solvent (methanol‑d4, acetone‑d6) at 278, 298 and 318â€⊤K. Journal of Molecula Liquids, 2019, 283, 1-5.	ar4.9	6
17	Molecular Dynamics Study of the Swelling of Poly(methyl methacrylate) in Supercritical Carbon Dioxide. Materials, 2019, 12, 3315.	2.9	15
18	Selective solvation in cosolvent-modified supercritical carbon dioxide on the example of hydroxycinnamic acids. The role of cosolvent self-association. Journal of Supercritical Fluids, 2018, 139, 19-29.	3.2	12

Darya L Gurina

#	Article	IF	CITATIONS
19	Solvation of Hydroxybenzoic and Hydroxycinnamic Acids in Supercritical Carbon Dioxide: Formation of Hydrogen Bonds with a Polar Cosolvent. Russian Journal of Physical Chemistry B, 2018, 12, 1276-1286.	1.3	2
20	Features of solvation of phenolic acids in supercritical carbon dioxide modified by methanol and acetone. Journal of Supercritical Fluids, 2017, 124, 50-56.	3.2	11
21	The study of peculiarities of parabens solvation in methanol- and acetone-modified supercritical carbon dioxide by computer simulation. Journal of Supercritical Fluids, 2017, 126, 47-54.	3.2	14
22	Self-diffusion of caffeine and methanol in ternary mixtures caffeine–methanol–carbon tetrachloride at temperatures of 298 and 313 K. Journal of Molecular Liquids, 2017, 241, 922-925.	4.9	11
23	Solvation of para-hydroxybenzoic acid and its esters (methylparaben, propylparaben) in supercritical carbon dioxide. Computer simulation. Journal of Supercritical Fluids, 2017, 120, 59-64.	3.2	9
24	Salicylic acid, acetylsalicylic acid, methyl salicylate, salicylamide, and sodium salicylate in supercritical carbon dioxide: Solute – cosolvent hydrogen bonds formation. Journal of Supercritical Fluids, 2016, 116, 62-69.	3.2	8
25	Solvation of salicylic acid in pure, methanol-modified and water-modified supercritical carbon dioxide: Molecular dynamics simulation. Journal of Supercritical Fluids, 2015, 104, 227-233.	3.2	11
26	The structure of hydrated complexes of o-hydroxybenzoic acid in water-modified supercritical carbon dioxide: The Car-Parrinello molecular dynamics simulation. Journal of Supercritical Fluids, 2014, 85, 1-5.	3.2	5
27	Structure of supercritical water: The concept of critical isotherm as a percolation threshold. Russian Journal of Physical Chemistry B, 2012, 6, 899-906.	1.3	5