Jeff Hasty

List of Publications by Year in descending order

Source: https:/|exaly.com/author-pdf/7981786/publications.pdf
Version: 2024-02-01

2 Design, mutate, screen: Multiplexed creation and arrayed screening of synchronized genetic clocks. Cell Systems, 2022, 13, 365-375.e5.
9 Survival of the weakest in non-transitive asymmetric interactions among strains of E. coli. NatureCommunications, 2020, 11, 6055.
11 Inducible cell-to-cell signaling for tunable dynamics in microbial communities. Nature
Communications, 2020, 11, 1193.5.8

\#	Article	IF	Citations
19	A stabilized microbial ecosystem of self-limiting bacteria using synthetic quorum-regulated lysis. Nature Microbiology, 2017, 2, 17083.	5.9	129
20	Multigenerational silencing dynamics control cell aging. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11253-11258.	3.3	60
21	Rapid and Scalable Preparation of Bacterial Lysates for Cell-Free Gene Expression. ACS Synthetic Biology, 2017, 6, 2198-2208.	1.9	85
22	Suppression of Beneficial Mutations in Dynamic Microbial Populations. Physical Review Letters, 2017, 118, 028102.	2.9	10
23	Synchronized DNA cycling across a bacterial population. Nature Genetics, 2017, 49, 1282-1285.	9.4	33
24	Posttranscriptional Regulation of Gcrl Expression and Activity Is Crucial for Metabolic Adjustment in Response to Clucose Availability. Molecular Cell, 2016, 62, 346-358.	4.5	27
25	Quorum Sensing Communication Modules for Microbial Consortia. ACS Synthetic Biology, 2016, 5, 969-977.	1.9	168
26	Criticality and Adaptivity in Enzymatic Networks. Biophysical Journal, 2016, 111, 1078-1087.	0.2	25
27	Synchronized cycles of bacterial lysis for in vivo delivery. Nature, 2016, 536, 81-85.	13.7	487
28	Transcriptional regulation with CRISPR-Cas9: principles, advances, and applications. Current Opinion in Biotechnology, 2016, 40, 177-184.	3.3	69
29	Orthogonal Modular Gene Repression in <i>Escherichia coli</i> Using Engineered CRISPR/Cas9. ACS Synthetic Biology, 2016, 5, 81-88.	1.9	58
30	A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment. ACS Synthetic Biology, 2016, 5, 8-14.	1.9	33
31	Turing Patterning Using Gene Circuits with Gas-Induced Degradation of Quorum Sensing Molecules. PLoS ONE, 2016, 11, e0153679.	1.1	19
32	Programmable probiotics for detection of cancer in urine. Science Translational Medicine, 2015, 7, 289 ra 84.	5.8	326
33	Distributed Classifier Based on Genetically Engineered Bacterial Cell Cultures. ACS Synthetic Biology, 2015, 4, 72-82.	1.9	22
34	In-Vivo Real-Time Control of Protein Expression from Endogenous and Synthetic Gene Networks. PLoS Computational Biology, 2014, 10, el003625.	1.5	114
35	Synchronization of Degrade-and-Fire Oscillations via a Common Activator. Physical Review Letters, 2014, 113, 128102.	2.9	21
36	Rapid and tunable post-translational coupling of genetic circuits. Nature, 2014, 508, 387-391.	13.7	194

45 Genetic Circuits in <i>Salmonella typhimurium</i>. ACS Synthetic Biology, 2012, 1, 458-464.
47 A sensing array of radically coupled genetic â€ biopixelsâ $€^{T M}$. Nature, 2012, 481, 39-44.13.7

```
5 5 ~ Y e a s t ~ D y n a m i c a l l y ~ M o d i f y ~ T h e i r ~ E n v i r o n m e n t ~ t o ~ A c h i e v e ~ B e t t e r ~ M a t i n g ~ E f f i c i e n c y . ~ S c i e n c e ~ S i g n a l i n g ,
2011, 4, ra54.
```

Coherent activation of a synthetic mammalian gene network. Systems and Synthetic Biology, 2010, 4, 15-23.

Phenotypic impact of regulatory noise in cellular stress-response pathways. Systems and Synthetic Biology, 2010, 4, 105-116.

A synchronized quorum of genetic clocks. Nature, 2010, 463, 326-330.
13.7

916

59 Cell cycle-dependent variations in protein concentration. Nucleic Acids Research, 2010, 38, 2676-2681.
$6.5 \quad 57$

60 Stochastic Emergence of Groupthink. Science, 2010, 328, 987-988.
6.0

14

61 Streaming Instability in Growing Cell Populations. Physical Review Letters, 2010, 104, 208101.
2.9

92

Correlation Resonance Generated by Coupled Enzymatic Processing. Biophysical Journal, 2010, 99,
$3172-3181$.
0.2

45
Systems biology of cellular rhythms: from cacophony to symphony. Current Opinion in Genetics and
Development, 2010, 20, 571-573.

Circadian rhythms in Neurospora crassa: Dynamics of the clock component frequency visualized
64 Circadian rhythms in Neurospora crassa: Dynamics of the clock component fre
using a fluorescent reporter. Fungal Genetics and Biology, 2010, 47, 332-341.
0.9

26

The pedestrian watchmaker: Genetic clocks from engineered oscillators. FEBS Letters, 2009, 583,
3931-3937.
1.3

25

66 Overpowering the component problem. Nature Biotechnology, 2009, 27, 450-451.
9.4

11
Microfluidic devices for measuring gene network dynamics in single cells. Nature Reviews Genetics,
2009, 10, 628-638.

2009, 10, 628-638.

Delay-Induced Degrade-and-Fire Oscillations in Small Genetic Circuits. Physical Review Letters, 2009, 102, 068105.
2.9

130

69 Metabolic gene regulation in a dynamically changing environment. Nature, 2008, 454, 1119-1122.
13.7

274

70 A fast, robust and tunable synthetic gene oscillator. Nature, 2008, 456, 516-519.
13.7

1,079

71 Genome rewired. Nature, 2008, 452, 824-825.
13.7 13
A synthetic gene network for tuning protein degradation in <i> Saccharomyces cerevisiae</i>.
Molecular Systems Biology, 2007, 3, 127 .

Phenotypic variability of growing cellular populations. Proceedings of the National Academy of

Statistics of cellular signal transduction as a race to the nucleus by multiple random walkers in
84 compartment/phosphorylation space. Proceedings of the National Academy of Sciences of the United
3.3

30
States of America, 2006, 103, 16752-16757.
85 Delay-induced stochastic oscillations in gene regulation. Proceedings of the National Academy of
3.3

498
Sciences of the United States of America, 2005, 102, 14593-14598.

Monitoring dynamics of singleâ€eell gene expression over multiple cell cycles. Molecular Systems
3.2

83
Biology, 2005, 1, 2005.0024.

Prediction and measurement of an autoregulatory genetic module. Proceedings of the National
Academy of Sciences of the United States of America, 2003, 100, 7714-7719.
3.3

409

Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling.
Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5944-5949.
3.3

380

Design then mutate. Proceedings of the National Academy of Sciences of the United States of America,
2002, 99, 16516-16518.
3.3

Academy of Sciences of the United States of America, 2002, 99, 679-684.

Synthetic Gene Network for Entraining and Amplifying Cellular Oscillations. Physical Review Letters,
$2002,88,148101$.

92 Translating the noise. Nature Genetics, 2002, 31, 13-14.
9.4

50

94 Wavelets of Excitability in Sensory Neurons. Journal of Neurophysiology, 2001, 86, 2097-2101.
Complex ligand-protein systems: a globally convergent iterative method for the n $\tilde{A}-\mathrm{m}$ case. Journal of

Mathematical Biology, 2001, 43, 313-324. \begin{tabular}{l}
Computational studies of gene regulatory networks: in numero molecular biology. Nature Reviews

$96 \quad$| Cenetics, 2001, 2, 268-279. |
| :--- |

97

\hline
\end{tabular}

98 Designer gene networks: Towards fundamental cellular control. Chaos, 2001, 11, 207.
1.0

239
Renormalization of Self-Organized Critical Models. Annals of the New York Academy of Sciences, 1998,
$848,9-17$.

100 Renormalization Group for Directed Sandpile Models. Physical Review Letters, 1998, 81, 1722-1725.
2.9

16
101 1179-1201.0.5100.4Design, Mutate, Screen:\ High-Throughput Creation of Genetic Clocks with DifferentPeriod-Amplitude Characteristics. SSRN Electronic Journal, 0, , .

