
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antibacterial properties of nanoparticles. Trends in Biotechnology, 2012, 30, 499-511.	4.9	2,113
2	Biological applications of gold nanoparticles. Chemical Society Reviews, 2008, 37, 1896.	18.7	1,603
3	Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Letters, 2005, 5, 331-338.	4.5	1,527
4	Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 1333-1383.	1.6	1,294
5	Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. Journal of Physical Chemistry B, 2001, 105, 8861-8871.	1.2	1,221
6	Biological applications of magnetic nanoparticles. Chemical Society Reviews, 2012, 41, 4306.	18.7	1,079
7	Prospects of Nanoscience with Nanocrystals. ACS Nano, 2015, 9, 1012-1057.	7.3	1,005
8	Hydrophobic Nanocrystals Coated with an Amphiphilic Polymer Shell:Â A General Route to Water Soluble Nanocrystals. Nano Letters, 2004, 4, 703-707.	4.5	1,003
9	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381.	7.3	976
10	Surface Functionalization of Nanoparticles with Polyethylene Glycol: Effects on Protein Adsorption and Cellular Uptake. ACS Nano, 2015, 9, 6996-7008.	7.3	717
11	The Role of Ligands in the Chemical Synthesis and Applications of Inorganic Nanoparticles. Chemical Reviews, 2019, 119, 4819-4880.	23.0	709
12	Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression. Nano Letters, 2005, 5, 585-589.	4.5	704
13	Synthesis, Characterization, and Bioconjugation of Fluorescent Gold Nanoclusters toward Biological Labeling Applications. ACS Nano, 2009, 3, 395-401.	7.3	700
14	Biological applications of colloidal nanocrystals. Nanotechnology, 2003, 14, R15-R27.	1.3	698
15	A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotechnology, 2009, 4, 577-580.	15.6	673
16	Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6, 446-465.	6.2	581
17	The Role of Metal Nanoparticles in Remote Release of Encapsulated Materials. Nano Letters, 2005, 5, 1371-1377.	4.5	533
18	Polymer-Coated Nanoparticles Interacting with Proteins and Cells: Focusing on the Sign of the Net Charge. ACS Nano, 2013, 7, 3253-3263.	7.3	477

#	Article	IF	CITATIONS
19	A Decade of the Protein Corona. ACS Nano, 2017, 11, 11773-11776.	7.3	477
20	Laser-Induced Release of Encapsulated Materials inside Living Cells. Angewandte Chemie - International Edition, 2006, 45, 4612-4617.	7.2	466
21	Protein corona formation around nanoparticles $\hat{a} \in \hat{f}$ from the past to the future. Materials Horizons, 2014, 1, 301-313.	6.4	464
22	Biodistribution of PEG-modified gold nanoparticles following intratracheal instillation and intravenous injection. Biomaterials, 2010, 31, 6574-6581.	5.7	461
23	Electrophoretic Isolation of Discrete Au Nanocrystal/DNA Conjugates. Nano Letters, 2001, 1, 32-35.	4.5	457
24	Minimum information reporting in bio–nano experimental literature. Nature Nanotechnology, 2018, 13, 777-785.	15.6	455
25	Labelling of cells with quantum dots. Nanotechnology, 2005, 16, R9-R25.	1.3	438
26	Design of an Amphiphilic Polymer for Nanoparticle Coating and Functionalization. Small, 2008, 4, 334-341.	5.2	429
27	(Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications. Chemical Reviews, 2015, 115, 2109-2135.	23.0	429
28	CuTe Nanocrystals: Shape and Size Control, Plasmonic Properties, and Use as SERS Probes and Photothermal Agents. Journal of the American Chemical Society, 2013, 135, 7098-7101.	6.6	403
29	Size and Surface Effects on the MRI Relaxivity of Manganese Ferrite Nanoparticle Contrast Agents. Nano Letters, 2007, 7, 2422-2427.	4.5	401
30	Cell Motility and Metastatic Potential Studies Based on Quantum Dot Imaging of Phagokinetic Tracks. Advanced Materials, 2002, 14, 882.	11.1	386
31	In vivo degeneration and the fate of inorganic nanoparticles. Chemical Society Reviews, 2016, 45, 2440-2457.	18.7	355
32	On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications. Small, 2004, 1, 48-63.	5.2	353
33	Dissecting the Molecular Mechanism of Apoptosis during Photothermal Therapy Using Gold Nanoprisms. ACS Nano, 2015, 9, 52-61.	7.3	336
34	The Challenge To Relate the Physicochemical Properties of Colloidal Nanoparticles to Their Cytotoxicity. Accounts of Chemical Research, 2013, 46, 743-749.	7.6	330
35	Conformation of Oligonucleotides Attached to Gold Nanocrystals Probed by Gel Electrophoresis. Nano Letters, 2003, 3, 33-36.	4.5	318
36	Quantum-Dot-Based Photoelectrochemical Sensors for Chemical and Biological Detection. ACS Applied Materials & Interfaces, 2013, 5, 2800-2814.	4.0	314

#	Article	IF	CITATIONS
37	In vivo integrity of polymer-coated gold nanoparticles. Nature Nanotechnology, 2015, 10, 619-623.	15.6	314
38	Quantitative Evaluation of Cellular Uptake and Trafficking of Plain and Polyethylene Glycolâ€Coated Gold Nanoparticles. Small, 2010, 6, 1669-1678.	5.2	313
39	Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots. Chemistry of Materials, 2002, 14, 2113-2119.	3.2	312
40	Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of the Royal Society Interface, 2014, 11, 20130931.	1.5	308
41	Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays. Analytical Chemistry, 2003, 75, 4766-4772.	3.2	302
42	Temperature: The "Ignored―Factor at the NanoBio Interface. ACS Nano, 2013, 7, 6555-6562.	7.3	299
43	Correlating Physico-Chemical with Toxicological Properties of Nanoparticles: The Present and the Future. ACS Nano, 2010, 4, 5527-5531.	7.3	296
44	Sorting Fluorescent Nanocrystals with DNA. Journal of the American Chemical Society, 2002, 124, 7070-7074.	6.6	293
45	Sequential Growth of Magic-Size CdSe Nanocrystals. Advanced Materials, 2007, 19, 548-552.	11.1	289
46	Polyelectrolyte microcapsules for biomedical applications. Soft Matter, 2009, 5, 282-291.	1.2	276
47	Nanoengineered Polymer Capsules: Tools for Detection, Controlled Delivery, and Site-Specific Manipulation. Small, 2005, 1, 194-200.	5.2	271
48	Polymer oated Nanoparticles: A Universal Tool for Biolabelling Experiments. Small, 2011, 7, 3113-3127.	5.2	261
49	Polymer microcapsules as mobile local pH-sensors. Journal of Materials Chemistry, 2007, 17, 4471.	6.7	245
50	Cytotoxic Effects of Gold Nanoparticles: A Multiparametric Study. ACS Nano, 2012, 6, 5767-5783.	7.3	239
51	Selected Standard Protocols for the Synthesis, Phase Transfer, and Characterization of Inorganic Colloidal Nanoparticles. Chemistry of Materials, 2017, 29, 399-461.	3.2	233
52	Selective Growth of PbSe on One or Both Tips of Colloidal Semiconductor Nanorods. Nano Letters, 2005, 5, 445-449.	4.5	228
53	Multifunctionalized Polymer Microcapsules: Novel Tools for Biological and Pharmacological Applications. Small, 2007, 3, 944-955.	5.2	223
54	Positioning metal-organic framework nanoparticles within the context of drug delivery – A comparison with mesoporous silica nanoparticles and dendrimers. Biomaterials, 2017, 123, 172-183.	5.7	221

#	Article	IF	CITATIONS
55	Electrophoretic and Structural Studies of DNA-Directed Au Nanoparticle Groupings. Journal of Physical Chemistry B, 2002, 106, 11758-11763.	1.2	214
56	The State of Nanoparticle-Based Nanoscience and Biotechnology: Progress, Promises, and Challenges. ACS Nano, 2012, 6, 8468-8483.	7.3	211
5 7	Air–Blood Barrier Translocation of Tracheally Instilled Gold Nanoparticles Inversely Depends on Particle Size. ACS Nano, 2014, 8, 222-233.	7.3	211
58	The Future of Layer-by-Layer Assembly: A Tribute to <i>ACS Nano</i> Associate Editor Helmuth Möhwald. ACS Nano, 2019, 13, 6151-6169.	7.3	211
59	Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability. Nanoscale, 2015, 7, 1403-1410.	2.8	210
60	LbL multilayer capsules: recent progress and future outlook for their use in life sciences. Nanoscale, 2010, 2, 458.	2.8	208
61	Electrophoretic Separation of Nanoparticles with a Discrete Number of Functional Groups. Advanced Functional Materials, 2006, 16, 943-948.	7.8	202
62	Magnetic Targeting and Cellular Uptake of Polymer Microcapsules Simultaneously Functionalized with Magnetic and Luminescent Nanocrystals. Langmuir, 2005, 21, 4262-4265.	1.6	192
63	Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications. Advanced Functional Materials, 2014, 24, 5936-5955.	7.8	192
64	One-Dimensional Arrangement of Gold Nanoparticles by Electrospinning. Chemistry of Materials, 2005, 17, 4949-4957.	3.2	189
65	Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. Journal of the Royal Society Interface, 2010, 7, S5-S13.	1.5	189
66	Investigating the Cytoskeleton of Chicken Cardiocytes with the Atomic Force Microscope. Journal of Structural Biology, 1997, 119, 84-91.	1.3	186
67	Interfacing Engineered Nanoparticles with Biological Systems: Anticipating Adverse Nano–Bio Interactions. Small, 2013, 9, 1573-1584.	5.2	176
68	Intracellular Processing of Proteins Mediated by Biodegradable Polyelectrolyte Capsules. Nano Letters, 2009, 9, 4398-4402.	4.5	175
69	Multiple Internalization Pathways of Polyelectrolyte Multilayer Capsules into Mammalian Cells. ACS Nano, 2013, 7, 6605-6618.	7.3	174
70	Synthesis and Characterization of Polymer-Coated Quantum Dots with Integrated Acceptor Dyes as FRET-Based Nanoprobes. Nano Letters, 2007, 7, 2613-2617.	4.5	173
71	Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacological Research, 2010, 62, 115-125.	3.1	171
72	Uptake of Colloidal Polyelectrolyteâ€Coated Particles and Polyelectrolyte Multilayer Capsules by Living Cells. Advanced Materials, 2008, 20, 4281-4287.	11.1	170

#	Article	IF	CITATIONS
73	Controlled antibody/(bio-) conjugation of inorganic nanoparticles for targeted delivery. Advanced Drug Delivery Reviews, 2013, 65, 677-688.	6.6	169
74	Stiffnessâ€Dependent In Vitro Uptake and Lysosomal Acidification of Colloidal Particles. Angewandte Chemie - International Edition, 2015, 54, 1365-1368.	7.2	169
75	Multiple Wurtzite Twinning in CdTe Nanocrystals Induced by Methylphosphonic Acid. Journal of the American Chemical Society, 2006, 128, 748-755.	6.6	165
76	Multiple particle tracking in 3-D+t microscopy: method and application to the tracking of endocytosed quantum dots. IEEE Transactions on Image Processing, 2006, 15, 1062-1070.	6.0	164
77	Size Determination of (Bio)conjugated Water-Soluble Colloidal Nanoparticles:  A Comparison of Different Techniques. Journal of Physical Chemistry C, 2007, 111, 11552-11559.	1.5	164
78	Fluorescent, magnetic and plasmonic—Hybrid multifunctional colloidal nano objects. Nano Today, 2012, 7, 282-296.	6.2	164
79	Substrate dependent differences in morphology and elasticity of living osteoblasts investigated by atomic force microscopy. Colloids and Surfaces B: Biointerfaces, 2000, 19, 367-379.	2.5	160
80	Dual Enzymatic Reaction-Assisted Gemcitabine Delivery Systems for Programmed Pancreatic Cancer Therapy. ACS Nano, 2017, 11, 1281-1291.	7.3	160
81	Polymeric multilayer capsules delivering biotherapeutics. Advanced Drug Delivery Reviews, 2011, 63, 748-761.	6.6	150
82	Surface Enhanced Raman Scattering Encoded Gold Nanostars for Multiplexed Cell Discrimination. Chemistry of Materials, 2016, 28, 6779-6790.	3.2	147
83	Gold NanoStoves for Microsecond DNA Melting Analysis. Nano Letters, 2008, 8, 619-623.	4.5	144
84	Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids. Chemistry of Materials, 2010, 22, 1739-1748.	3.2	140
85	Physicochemical Properties of Protein oated Gold Nanoparticles in Biological Fluids and Cells before and after Proteolytic Digestion. Angewandte Chemie - International Edition, 2013, 52, 4179-4183.	7.2	138
86	Photoactivated Release of Cargo from the Cavity of Polyelectrolyte Capsules to the Cytosol of Cells. Langmuir, 2008, 24, 12517-12520.	1.6	137
87	Rare earth based nanostructured materials: synthesis, functionalization, properties and bioimaging and biosensing applications. Nanophotonics, 2017, 6, 881-921.	2.9	137
88	Mapping the mechanical pulse of single cardiomyocytes with the atomic force microscope. European Biophysics Journal, 1999, 28, 179-186.	1.2	136
89	Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281, 40-43.	2.3	135
90	The Toxicity of Silver Nanoparticles Depends on Their Uptake by Cells and Thus on Their Surface Chemistry. Particle and Particle Systems Characterization, 2013, 30, 1079-1085.	1.2	131

#	Article	IF	CITATIONS
91	Influence of Size and Shape on the Anatomical Distribution of Endotoxin-Free Gold Nanoparticles. ACS Nano, 2017, 11, 5519-5529.	7.3	131
92	In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far?. Beilstein Journal of Nanotechnology, 2014, 5, 1477-1490.	1.5	130
93	Molecular Weight, Osmotic Second Virial Coefficient, and Extinction Coefficient of Colloidal CdSe Nanocrystals. Journal of Physical Chemistry B, 2002, 106, 5500-5505.	1.2	128
94	Combined Atomic Force Microscopy and Optical Microscopy Measurements as a Method To Investigate Particle Uptake by Cells. Small, 2006, 2, 394-400.	5.2	127
95	The influence of the size and aspect ratio of anisotropic, porous CaCO3 particles on their uptake by cells. Journal of Nanobiotechnology, 2015, 13, 53.	4.2	127
96	Techniques for the experimental investigation of the protein corona. Current Opinion in Biotechnology, 2017, 46, 106-113.	3.3	126
97	Composite Nanoparticles Take Aim at Cancer. ACS Nano, 2008, 2, 2200-2205.	7.3	125
98	Ligand density on nanoparticles: A parameter with critical impact on nanomedicine. Advanced Drug Delivery Reviews, 2019, 143, 22-36.	6.6	124
99	On the mechanical stability of polymeric microcontainers functionalized with nanoparticles. Soft Matter, 2009, 5, 148-155.	1.2	122
100	SERS Quantification and Characterization of Proteins and Other Biomolecules. Langmuir, 2017, 33, 9711-9730.	1.6	121
101	Characterization of protein adsorption onto FePt nanoparticles using dual-focus fluorescence correlation spectroscopy. Beilstein Journal of Nanotechnology, 2011, 2, 374-383.	1.5	119
102	Cytotoxicity of nanoparticle-loaded polymer capsules. Talanta, 2005, 67, 486-491.	2.9	118
103	In situ detection of the protein corona in complex environments. Nature Communications, 2017, 8, 1542.	5.8	117
104	Phase Transfer and Polymer Coating Methods toward Improving the Stability of Metallic Nanoparticles for Biological Applications. Chemistry of Materials, 2015, 27, 990-997.	3.2	116
105	Light-Controlled Bioelectrochemical Sensor Based on CdSe/ZnS Quantum Dots. Analytical Chemistry, 2011, 83, 7778-7785.	3.2	115
106	Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Angewandte Chemie - International Edition, 2016, 55, 5483-5487.	7.2	115
107	Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nature Communications, 2016, 7, 13818.	5.8	115
108	Catalytic Azide Reduction in Biological Environments. ChemBioChem, 2012, 13, 1116-1120.	1.3	113

#	Article	IF	CITATIONS
109	How Entanglement of Different Physicochemical Properties Complicates the Prediction of <i>in Vitro</i> and <i>in Vivo</i> Interactions of Gold Nanoparticles. ACS Nano, 2018, 12, 10104-10113.	7.3	113
110	Quantification of the internalization patterns of superparamagnetic iron oxide nanoparticles with opposite charge. Journal of Nanobiotechnology, 2012, 10, 28.	4.2	110
111	Cell-Imprinted Substrates Direct the Fate of Stem Cells. ACS Nano, 2013, 7, 8379-8384.	7.3	110
112	Multifunctional Nanoparticles for Dual Imaging. Analytical Chemistry, 2011, 83, 2877-2882.	3.2	109
113	Bioanalytics and biolabeling with semiconductor nanoparticles (quantum dots). Journal of Materials Chemistry, 2007, 17, 1343-1346.	6.7	108
114	Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules. Nanoscale, 2015, 7, 570-576.	2.8	107
115	Lightâ€Addressable Capsules as Caged Compound Matrix for Controlled Triggering of Cytosolic Reactions. Angewandte Chemie - International Edition, 2013, 52, 695-699.	7.2	104
116	Gel Electrophoresis of Gold-DNA Nanoconjugates. Journal of Biomedicine and Biotechnology, 2007, 2007, 2007, 1-9.	3.0	103
117	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie - International Edition, 2019, 58, 7078-7082.	7.2	103
118	pHâ€Sensitive Capsules as Intracellular Optical Reporters for Monitoring Lysosomal pH Changes Upon Stimulation. Small, 2012, 8, 943-948.	5.2	100
119	Exploration of MOF nanoparticle sizes using various physical characterization methods – is what you measure what you get?. CrystEngComm, 2016, 18, 4359-4368.	1.3	100
120	Adenosine Triphosphate-Triggered Release of Macromolecular and Nanoparticle Loads from Aptamer/DNA-Cross-Linked Microcapsules. ACS Nano, 2015, 9, 9078-9086.	7.3	98
121	Ion and pH Sensing with Colloidal Nanoparticles: Influence of Surface Charge on Sensing and Colloidal Properties. ChemPhysChem, 2010, 11, 730-735.	1.0	96
122	NIR-light triggered delivery of macromolecules into the cytosol. Journal of Controlled Release, 2012, 159, 120-127.	4.8	96
123	Multiplexed Sensing of Ions with Barcoded Polyelectrolyte Capsules. ACS Nano, 2011, 5, 9668-9674.	7.3	95
124	Nanoparticle-modified polyelectrolyte capsules. Nano Today, 2008, 3, 12-21.	6.2	93
125	Protein-mediated synthesis, pH-induced reversible agglomeration, toxicity and cellular interaction of silver nanoparticles. Colloids and Surfaces B: Biointerfaces, 2013, 102, 511-518.	2.5	93
126	Model Driven Optimization of Magnetic Anisotropy of Exchange-Coupled Core–Shell Ferrite Nanoparticles for Maximal Hysteretic Loss. Chemistry of Materials, 2015, 27, 7380-7387.	3.2	93

#	Article	IF	CITATIONS
127	Fluorescent–Magnetic Hybrid Nanoparticles Induce a Doseâ€Dependent Increase in Proinflammatory Response in Lung Cells in vitro Correlated with Intracellular Localization. Small, 2010, 6, 753-762.	5.2	91
128	Where Are We Heading in Nanotechnology Environmental Health and Safety and Materials Characterization?. ACS Nano, 2015, 9, 5627-5630.	7.3	91
129	Colloidal Gold Nanoparticles Induce Changes in Cellular and Subcellular Morphology. ACS Nano, 2017, 11, 7807-7820.	7.3	88
130	Bridge over troubled waters: understanding the synthetic and biological identities of engineered nanomaterials. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 111-129.	3.3	87
131	Nanoparticles for radiooncology: Mission, vision, challenges. Biomaterials, 2017, 120, 155-184.	5.7	87
132	Nanomedicine delivery: does protein corona route to the target or off road?. Nanomedicine, 2015, 10, 3231-3247.	1.7	86
133	Magnetic Capsules for NMR Imaging: Effect of Magnetic Nanoparticles Spatial Distribution and Aggregation. Journal of Physical Chemistry C, 2011, 115, 6257-6264.	1.5	83
134	Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study. Beilstein Journal of Nanotechnology, 2014, 5, 2036-2047.	1.5	83
135	The Application of Stimuliâ€Responsive VEGF―and ATPâ€Aptamerâ€Based Microcapsules for the Controlled Release of an Anticancer Drug, and the Selective Targeted Cytotoxicity toward Cancer Cells. Advanced Functional Materials, 2016, 26, 4262-4273.	7.8	83
136	Quantum dot-based cell motility assay. Differentiation, 2003, 71, 542-548.	1.0	82
137	Quantum Dots on Gold: Electrodes For Photoswitchable Cytochromeâ€c Electrochemistry. Small, 2006, 2, 741-743.	5.2	82
138	Blue light emitting diodes based on fluorescent CdSeâ^•ZnS nanocrystals. Applied Physics Letters, 2007, 90, 051106.	1.5	82
139	A Novel Flowâ€Cytometryâ€Based Assay for Cellular Uptake Studies of Polyelectrolyte Microcapsules. Small, 2008, 4, 1763-1768.	5.2	77
140	Laser Fragmentation of Colloidal Gold Nanoparticles with High-Intensity Nanosecond Pulses is Driven by a Single-Step Fragmentation Mechanism with a Defined Educt Particle-Size Threshold. Journal of Physical Chemistry C, 2018, 122, 22125-22136.	1.5	77
141	Nanobuffering of pH-Responsive Polymers: A Known but Sometimes Overlooked Phenomenon and Its Biological Applications. ACS Nano, 2019, 13, 4876-4882.	7.3	77
142	Discontinuous Growth of Ilâ^'VI Semiconductor Nanocrystals from Different Materials. Journal of Physical Chemistry C, 2010, 114, 6205-6215.	1.5	76
143	Colloidal Stability and Surface Chemistry Are Key Factors for the Composition of the Protein Corona of Inorganic Gold Nanoparticles. Advanced Functional Materials, 2017, 27, 1701956.	7.8	76
144	Quantitative Surface-Enhanced Raman Scattering Ultradetection of Atomic Inorganic Ions: The Case of Chloride. ACS Nano, 2011, 5, 7539-7546.	7.3	75

#	Article	IF	CITATIONS
145	Homogeneous Biosensing Based on Magnetic Particle Labels. Sensors, 2016, 16, 828.	2.1	75
146	Rhenium Complexes with Visible‣ightâ€Induced Anticancer Activity. ChemMedChem, 2013, 8, 924-927.	1.6	74
147	Plasmonic Nanoprobes for Realâ€īme Optical Monitoring of Nitric Oxide inside Living Cells. Angewandte Chemie - International Edition, 2013, 52, 13694-13698.	7.2	74
148	Quantum-Dot-Modified Electrode in Combination with NADH-Dependent Dehydrogenase Reactions for Substrate Analysis. Langmuir, 2010, 26, 1395-1400.	1.6	72
149	Programmed pH-Responsive Microcapsules for the Controlled Release of CdSe/ZnS Quantum Dots. ACS Nano, 2016, 10, 8683-8689.	7.3	72
150	Extracellular measurements of averaged ionic currents with the light-addressable potentiometric sensor (LAPS). Sensors and Actuators B: Chemical, 2004, 98, 299-304.	4.0	71
151	Ligand exchange of CdSe nanocrystals probed by optical spectroscopy in the visible and mid-IR. Journal of Materials Chemistry, 2008, 18, 2728.	6.7	71
152	Lateral resolution of light-addressable potentiometric sensors: an experimental and theoretical investigation. Sensors and Actuators A: Physical, 1997, 63, 47-57.	2.0	70
153	Ratiometric Optical Sensing of Chloride Ions with Organic Fluorophore–Gold Nanoparticle Hybrids: A Systematic Study of Design Parameters and Surface Charge Effects. Small, 2010, 6, 2590-2597.	5.2	70
154	High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. ACS Nano, 2015, 9, 10431-10444.	7.3	70
155	Light-Triggered Ruthenium-Catalyzed Allylcarbamate Cleavage in Biological Environments. Organometallics, 2012, 31, 5968-5970.	1.1	67
156	Nanotoxicology and nanomedicine: The Yin and Yang of nano-bio interactions for the new decade. Nano Today, 2021, 39, 101184.	6.2	67
157	A novel design of multi-light LAPS based on digital compensation of frequency domain. Sensors and Actuators B: Chemical, 2001, 73, 152-156.	4.0	66
158	Gene Silencing Mediated by Magnetic Lipospheres Tagged with Small Interfering RNA. Nano Letters, 2010, 10, 3914-3921.	4.5	66
159	Quantification of gold nanoparticle cell uptake under controlled biological conditions and adequate resolution. Nanomedicine, 2014, 9, 607-621.	1.7	66
160	Investigation of the spatial resolution of the light-addressable potentiometric sensor. Sensors and Actuators A: Physical, 2000, 86, 187-196.	2.0	65
161	Synthesis and Characterization of Ratiometric Ionâ€Sensitive Polyelectrolyte Capsules. Small, 2011, 7, 351-363.	5.2	65
162	Multiplexed Sensing and Imaging with Colloidal Nano- and Microparticles. Annual Review of Analytical Chemistry, 2013, 6, 53-81.	2.8	65

#	Article	IF	CITATIONS
163	Biodegradable capsules as non-viral vectors for in vitro delivery of PEI/siRNA polyplexes for efficient gene silencing. Journal of Controlled Release, 2014, 196, 132-138.	4.8	65
164	Quantitative Particle–Cell Interaction: Some Basic Physicochemical Pitfalls. Langmuir, 2017, 33, 6639-6646.	1.6	65
165	Immobilization of Quantum Dots <i>via</i> Conjugated Self-Assembled Monolayers and Their Application as a Light-Controlled Sensor for the Detection of Hydrogen Peroxide. ACS Nano, 2011, 5, 9870-9876.	7.3	63
166	Zwitterionic surface coating of quantum dots reduces protein adsorption and cellular uptake. Nanoscale, 2016, 8, 17794-17800.	2.8	63
167	Interaction of stable colloidal nanoparticles with cellular membranes. Biotechnology Advances, 2014, 32, 679-692.	6.0	62
168	The Cellular Interactions of PEGylated Gold Nanoparticles: Effect of PEGylation on Cellular Uptake and Cytotoxicity. Particle and Particle Systems Characterization, 2014, 31, 794-800.	1.2	62
169	Corrosion Protection and Long-Term Chemical Functionalization of Gallium Arsenide in an Aqueous Environment. Advanced Functional Materials, 2002, 12, 266.	7.8	61
170	Photostimulated Au Nanoheaters in Polymer and Biological Media: Characterization of Mechanical Destruction and Boiling. Advanced Functional Materials, 2012, 22, 294-303.	7.8	61
171	Fluorescent Nanocrystals as Colloidal Probes in Complex Fluids Measured by Fluorescence Correlation Spectroscopy. Small, 2005, 1, 997-1003.	5.2	60
172	Optical Sensing of Small lons with Colloidal Nanoparticles. Chemistry of Materials, 2012, 24, 738-745.	3.2	60
173	Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. Journal of Inorganic Biochemistry, 2015, 153, 334-338.	1.5	60
174	X-ray-Based Techniques to Study the Nano–Bio Interface. ACS Nano, 2021, 15, 3754-3807.	7.3	60
175	Impact of Ligands on Structural and Optical Properties of Ag ₂₉ Nanoclusters. Journal of the American Chemical Society, 2021, 143, 9405-9414.	6.6	60
176	Magnetic Nanobeads Decorated with Silver Nanoparticles as Cytotoxic Agents and Photothermal Probes. Small, 2012, 8, 2731-2742.	5.2	58
177	The effect of nanoparticle degradation on poly(methacrylic acid)-coated quantum dot toxicity: The importance of particle functionality assessment in toxicology. Acta Biomaterialia, 2014, 10, 732-741.	4.1	57
178	Characterization of gold nanoparticles with different hydrophilic coatings via capillary electrophoresis and Taylor dispersion analysis. Part I: Determination of the zeta potential employing a modified analytic approximation. Journal of Colloid and Interface Science, 2015, 450, 288-300.	5.0	57
179	Complex Colloidal Assembly. Science, 2011, 334, 1359-1360.	6.0	56
180	Synthesis and functionalization of monodisperse near-ultraviolet and visible excitable multifunctional Eu ³⁺ , Bi ³⁺ :REVO ₄ nanophosphors for bioimaging and biosensing applications. Nanoscale, 2016, 8, 12221-12236.	2.8	56

#	Article	IF	CITATIONS
181	Gold-Based Nanomaterials for Applications in Nanomedicine. Topics in Current Chemistry, 2016, 370, 169-202.	4.0	56
182	Photoelectrochemical signal chain based on quantum dots on gold—Sensitive to superoxide radicals in solution. Biosensors and Bioelectronics, 2008, 24, 260-265.	5.3	55
183	Control of Wnt/β-Catenin Signaling Pathway <i>in Vivo via</i> Light Responsive Capsules. ACS Nano, 2016, 10, 4828-4834.	7.3	55
184	Synthesis and Characterization of Colloidal Fluorescent Silver Nanoclusters. Langmuir, 2012, 28, 8915-8919.	1.6	54
185	Grand Challenges for Nanoscience and Nanotechnology. ACS Nano, 2015, 9, 6637-6640.	7.3	53
186	Light-Addressable and Degradable Silica Capsules for Delivery of Molecular Cargo to the Cytosol of Cells. Chemistry of Materials, 2015, 27, 1929-1942.	3.2	52
187	Protein Oriented Ligation on Nanoparticles Exploiting <i>O</i> ₆ â€Alkylguanineâ€DNA Transferase (SNAP) Genetically Encoded Fusion. Small, 2012, 8, 1492-1497.	5.2	51
188	Ecotoxicity and uptake of polymer coated gold nanoparticles. Nanotoxicology, 2013, 7, 37-47.	1.6	51
189	DNA Melting in Gold Nanostove Clusters. Journal of Physical Chemistry C, 2010, 114, 7401-7411.	1.5	50
190	Distance control in-between plasmonic nanoparticles via biological and polymeric spacers. Nano Today, 2013, 8, 480-493.	6.2	50
191	In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics. Beilstein Journal of Nanotechnology, 2014, 5, 1699-1711.	1.5	50
192	Detailed investigation on how the protein corona modulates the physicochemical properties and gene delivery of polyethylenimine (PEI) polyplexes. Biomaterials Science, 2018, 6, 1800-1817.	2.6	50
193	Lysosomal Proton Buffering of Poly(ethylenimine) Measured <i>In Situ</i> by Fluorescent pH-Sensor Microcapsules. ACS Nano, 2020, 14, 8012-8023.	7.3	50
194	Synthesis, Characterization, and Evaluation of Superparamagnetic Doped Ferrites as Potential Therapeutic Nanotools. Chemistry of Materials, 2020, 32, 2220-2231.	3.2	50
195	Growth of colloidal nanoparticles of group Il–VI and IV–VI semiconductors on top of magnetic iron–platinum nanocrystals. Journal of Materials Chemistry, 2008, 18, 4311.	6.7	49
196	How Colloidal Nanoparticles Could Facilitate Multiplexed Measurements of Different Analytes with Analyte-Sensitive Organic Fluorophores. ACS Nano, 2011, 5, 21-25.	7.3	49
197	Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.	7.3	49
198	Influence of Temperature on the Colloidal Stability of Polymer oated Gold Nanoparticles in Cell Culture Media. Small, 2016, 12, 1723-1731.	5.2	49

#	Article	IF	CITATIONS
199	Polymericâ€Gold Nanohybrids for Combined Imaging and Cancer Therapy. Advanced Healthcare Materials, 2014, 3, 1309-1325.	3.9	48
200	Protein-Mediated Shape Control of Silver Nanoparticles. Bioconjugate Chemistry, 2018, 29, 1261-1265.	1.8	48
201	Quantitative Particle Uptake by Cells as Analyzed by Different Methods. Angewandte Chemie - International Edition, 2020, 59, 5438-5453.	7.2	48
202	Luminescent Rare-earth-based Nanoparticles: A Summarized Overview of their Synthesis, Functionalization, and Applications. Topics in Current Chemistry, 2016, 374, 48.	3.0	47
203	De Novo Design of Supercharged, Unfolded Protein Polymers, and Their Assembly into Supramolecular Aggregates. Macromolecular Rapid Communications, 2011, 32, 186-190.	2.0	46
204	Dissociation coefficients of protein adsorption to nanoparticles as quantitative metrics for description of the protein corona: A comparison of experimental techniques and methodological relevance. International Journal of Biochemistry and Cell Biology, 2016, 75, 148-161.	1.2	46
205	Triple-Labeling of Polymer-Coated Quantum Dots and Adsorbed Proteins for Tracing their Fate in Cell Cultures. ACS Nano, 2019, 13, 4631-4639.	7.3	46
206	Improvement of conversion efficiency for multi-junction solar cells by incorporation of Au nanoclusters. Optics Express, 2008, 16, 15754.	1.7	45
207	Identifying Spinel Phases in Nearly Monodisperse Iron Oxide Colloidal Nanocrystal. Journal of Physical Chemistry C, 2009, 113, 18667-18675.	1.5	45
208	Optical properties of tetrapod-shaped CdTe nanocrystals. Applied Physics Letters, 2005, 87, 224101.	1.5	44
209	Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation. Nanoscale, 2017, 9, 2814-2823.	2.8	44
210	Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. ACS Applied Materials & Interfaces, 2019, 11, 41957-41971.	4.0	44
211	Spatially resolved monitoring of cellular metabolic activity with a semiconductor-based biosensor. Biosensors and Bioelectronics, 2003, 18, 31-41.	5.3	43
212	Patients, Here Comes More Nanotechnology. ACS Nano, 2016, 10, 8139-8142.	7.3	43
213	One example on how colloidal nano- and microparticles could contribute to medicine. Nanomedicine, 2009, 4, 967-979.	1.7	42
214	A General Synthetic Approach for Obtaining Cationic and Anionic Inorganic Nanoparticles via Encapsulation in Amphiphilic Copolymers. Small, 2011, 7, 2929-2934.	5.2	42
215	DC-SIGN and Influenza Hemagglutinin Dynamics in Plasma Membrane Microdomains Are Markedly Different. Biophysical Journal, 2011, 100, 2662-2670.	0.2	41
216	The impact of species and cell type on the nanosafety profile of iron oxide nanoparticles in neural cells. Journal of Nanobiotechnology, 2016, 14, 69.	4.2	41

#	Article	IF	CITATIONS
217	Nano and Plants. ACS Nano, 2022, 16, 1681-1684.	7.3	41
218	Photoelectrochemical Sensor Based on Quantum Dots and Sarcosine Oxidase. ChemPhysChem, 2013, 14, 2338-2342.	1.0	40
219	Can the Ames test provide an insight into nano-object mutagenicity? Investigating the interaction between nano-objects and bacteria. Nanotoxicology, 2013, 7, 1373-1385.	1.6	40
220	Standardizing Nanomaterials. ACS Nano, 2016, 10, 9763-9764.	7.3	40
221	One-Step Synthesis and Characterization of N-Doped Carbon Nanodots for Sensing in Organic Media. Analytical Chemistry, 2016, 88, 3178-3185.	3.2	39
222	Comprehensive and Systematic Analysis of the Immunocompatibility of Polyelectrolyte Capsules. Bioconjugate Chemistry, 2017, 28, 556-564.	1.8	39
223	Tracking stem cells and macrophages with gold and iron oxide nanoparticles – The choice of the best suited particles. Applied Materials Today, 2019, 15, 267-279.	2.3	39
224	On the Use of pH Titration to Quantitatively Characterize Colloidal Nanoparticles. Langmuir, 2012, 28, 15141-15149.	1.6	38
225	Multimodal nanoparticles as alignment and correlation markers in fluorescence/soft X-ray cryo-microscopy/tomography of nucleoplasmic reticulum and apoptosis in mammalian cells. Ultramicroscopy, 2014, 146, 46-54.	0.8	38
226	Taking Advantage of Hydrophobic Fluorine Interactions for Selfâ€Assembled Quantum Dots as a Delivery Platform for Enzymes. Angewandte Chemie - International Edition, 2018, 57, 5033-5036.	7.2	38
227	Electronâ^'Hole Dynamics in CdTe Tetrapods. Journal of Physical Chemistry B, 2006, 110, 17334-17338.	1.2	37
228	Synthesis and evaluation of gold nanoparticle-modified polyelectrolyte capsules under microwave irradiation for remotely controlled release for cargo. Journal of Materials Chemistry, 2011, 21, 11468.	6.7	37
229	Integration of Organic Fluorophores in the Surface of Polymer oated Colloidal Nanoparticles for Sensing the Local Polarity of the Environment. ChemPhysChem, 2012, 13, 1030-1035.	1.0	37
230	In vitro and intracellular sensing by using the photoluminescence of quantum dots. Analytical and Bioanalytical Chemistry, 2010, 397, 935-942.	1.9	36
231	Proteinâ€Induced Shape Control of Noble Metal Nanoparticles. Advanced Materials Interfaces, 2019, 6, 1801407.	1.9	36
232	Can the light-addressable potentiometric sensor (LAPS) detect extracellular potentials of cardiac myocytes?. IEEE Transactions on Biomedical Engineering, 2000, 47, 1106-1113.	2.5	35
233	Comparison of the in Vitro Uptake and Toxicity of Collagen- and Synthetic Polymer-Coated Gold Nanoparticles. Nanomaterials, 2015, 5, 1418-1430.	1.9	35
234	Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: Determination of the hydrodynamic radius distribution – Comparison with asymmetric flow field-flow fractionation. Journal of Colloid and Interface Science, 2015, 457, 131-140.	5.0	35

#	Article	IF	CITATIONS
235	Quantitative uptake of colloidal particles by cell cultures. Science of the Total Environment, 2016, 568, 819-828.	3.9	35
236	Laterally and Temporally Controlled Intracellular Staining by Lightâ€Triggered Release of Encapsulated Fluorescent Markers. Chemistry - A European Journal, 2018, 24, 2098-2102.	1.7	35
237	Protein-Protected Porous Bimetallic AgPt Nanoparticles with pH-Switchable Peroxidase/Catalase-Mimicking Activity. , 2019, 1, 310-319.		35
238	Gold nanoprisms for photothermal cell ablation <i>in vivo</i> . Nanomedicine, 2014, 9, 1913-1922.	1.7	33
239	Photoâ€electrochemical Bioanalysis of Guanosine Monophosphate Using Coupled Enzymatic Reactions at a CdS/ZnS Quantum Dot Electrode. Small, 2015, 11, 5844-5850.	5.2	33
240	Future Perspectives Towards the Use of Nanomaterials for Smart Food Packaging and Quality Control. Particle and Particle Systems Characterization, 2015, 32, 408-416.	1.2	33
241	Evaluation of quantum dot cytotoxicity: interpretation of nanoparticle concentrations versus intracellular nanoparticle numbers. Nanotoxicology, 2016, 10, 1318-1328.	1.6	33
242	Light as Trigger for Biocatalysis: Photonic Wiring of Flavin Adenine Dinucleotide-Dependent Glucose Dehydrogenase to Quantum Dot-Sensitized Inverse Opal TiO ₂ Architectures via Redox Polymers. ACS Catalysis, 2018, 8, 5212-5220.	5.5	33
243	Hybrids of Polymeric Capsules, Lipids, and Nanoparticles: Thermodynamics and Temperature Rise at the Nanoscale and Emerging Applications. Langmuir, 2019, 35, 8574-8583.	1.6	33
244	Highly integrated surface potential sensors. Sensors and Actuators B: Chemical, 2000, 69, 266-275.	4.0	32
245	Role of the Protein Corona Derived from Human Plasma in Cellular Interactions between Nanoporous Human Serum Albumin Particles and Endothelial Cells. Bioconjugate Chemistry, 2017, 28, 2062-2068.	1.8	32
246	Photoluminescence quenching of dye molecules near a resonant silicon nanoparticle. Scientific Reports, 2018, 8, 6107.	1.6	32
247	Excitation dynamics in polymer-coated semiconductor quantum dots with integrated dye molecules: The role of reabsorption. Journal of Applied Physics, 2009, 106, .	1.1	31
248	Wrapping Nanocrystals with an Amphiphilic Polymer Preloaded with Fixed Amounts of Fluorophore Generates FRET-Based Nanoprobes with a Controlled Donor/Acceptor Ratio. Langmuir, 2009, 25, 3232-3239.	1.6	31
249	Development of an assay based on cell counting with quantum dot labels for comparing cell adhesion within cocultures. Nano Today, 2011, 6, 20-27.	6.2	31
250	The role of intracellular trafficking of CdSe/ZnS QDs on their consequent toxicity profile. Journal of Nanobiotechnology, 2017, 15, 45.	4.2	31
251	Optimizing conditions for labeling of mesenchymal stromal cells (MSCs) with gold nanoparticles: a prerequisite for in vivo tracking of MSCs. Journal of Nanobiotechnology, 2017, 15, 24.	4.2	31
252	Influence of the chirality of carbon nanodots on their interaction with proteins and cells. Nature Communications, 2021, 12, 7208.	5.8	31

#	Article	IF	CITATIONS
253	Assembly and Degradation of Inorganic Nanoparticles in Biological Environments. Bioconjugate Chemistry, 2019, 30, 2751-2762.	1.8	30
254	Conjugation of Polymer-Coated Gold Nanoparticles with Antibodies—Synthesis and Characterization. Nanomaterials, 2015, 5, 1297-1316.	1.9	29
255	Inhibition of the cancer-associated TASK 3 channels by magnetically induced thermal release of Tetrandrine from a polymeric drug carrier. Journal of Controlled Release, 2016, 237, 50-60.	4.8	29
256	Metal ions in the context of nanoparticles toward biological applications. Current Opinion in Chemical Engineering, 2014, 4, 88-96.	3.8	28
257	Remotely controlled opening of delivery vehicles and release of cargo by external triggers. Advanced Drug Delivery Reviews, 2019, 138, 117-132.	6.6	28
258	Linear Size Contraction of Ligand Protected Ag ₂₉ Clusters by Substituting Ag with Cu. ACS Nano, 2020, 14, 15064-15070.	7.3	28
259	Metabolic activation stimulates acid secretion and expression of matrix degrading proteases in human osteoblasts. Annals of the Rheumatic Diseases, 2004, 63, 67-70.	0.5	27
260	Particle-Based Optical Sensing of Intracellular Ions at the Example of Calcium - What Are the Experimental Pitfalls?. Small, 2015, 11, 896-904.	5.2	27
261	Dissecting common and divergent molecular pathways elicited by CdSe/ZnS quantum dots in freshwater and marine sentinel invertebrates. Nanotoxicology, 2017, 11, 289-303.	1.6	27
262	Maintenance of cellular respiration indicates drug resistance in acute myeloid leukemia. Leukemia Research, 2017, 62, 56-63.	0.4	27
263	From mouse to mouseâ€ear cress: Nanomaterials as vehicles in plant biotechnology. Exploration, 2021, 1, 9-20.	5.4	27
264	Evaluation of quantum dots applied as switchable layer in a light-controlled electrochemical sensor. Analytical and Bioanalytical Chemistry, 2010, 396, 1095-1103.	1.9	26
265	Light triggered detection of aminophenyl phosphate with a quantum dot based enzyme electrode. Journal of Nanobiotechnology, 2011, 9, 46.	4.2	26
266	Engineering of nanoparticle size via electrohydrodynamic jetting. Bioengineering and Translational Medicine, 2016, 1, 82-93.	3.9	26
267	Three-dimensional measurements of the pressure distribution in artificial joints with a capacitive sensor array. Journal of Biomechanics, 2004, 37, 1623-1625.	0.9	24
268	Advances in Use of Capsule-Based Fluorescent Sensors for Measuring Acidification of Endocytic Compartments in Cells with Altered Expression of V-ATPase Subunit V ₁ G ₁ . ACS Applied Materials & Interfaces, 2015, 7, 15052-15060.	4.0	24
269	Cancer: Nanoscience and Nanotechnology Approaches. ACS Nano, 2017, 11, 4375-4376.	7.3	24
270	Synthesis of Fluorescent Silver Nanoclusters: Introducing Bottom-Up and Top-Down Approaches to Nanochemistry in a Single Laboratory Class. Journal of Chemical Education, 2020, 97, 239-243.	1.1	24

#	Article	IF	CITATIONS
271	Recent Notable Approaches to Study Selfâ€Assembly of Nanoparticles with Xâ€Ray Scattering and Electron Microscopy. Particle and Particle Systems Characterization, 2021, 38, 2100087.	1.2	23
272	Electrically Excitable Normal Rat Kidney Fibroblasts: A New Model System for Cell-Semiconductor Hybrids. Biophysical Journal, 1999, 76, 1659-1667.	0.2	22
273	Fluorescence resonance energy transfer induced by conjugation of metalloproteins to nanoparticles. Chemical Physics Letters, 2006, 417, 351-357.	1.2	22
274	Tracking of Cellular Uptake of Hydrophilic CdSe/ZnS Quantum Dots/Hydroxyapatite Composites Nanoparticles in MC3T3-E1 Osteoblast Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 2758-2762.	0.9	22
275	Nanoparticle dosage—a nontrivial task of utmost importance for quantitative nanosafety research. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8, 479-492.	3.3	22
276	Nanoscience and Nanotechnology Impacting Diverse Fields of Science, Engineering, and Medicine. ACS Nano, 2016, 10, 10615-10617.	7.3	22
277	Highly active antibody-modified magnetic polyelectrolyte capsules. Journal of Colloid and Interface Science, 2016, 474, 1-8.	5.0	22
278	Carbon nanotubes gathered onto silica particles lose their biomimetic properties with the cytoskeleton becoming biocompatible. International Journal of Nanomedicine, 2017, Volume 12, 6317-6328.	3.3	22
279	Encapsulated enzymes with integrated fluorescence-control of enzymatic activity. Journal of Materials Chemistry B, 2015, 3, 2801-2807.	2.9	21
280	Controlled interaction of nanoparticles with cells. Science, 2016, 351, 814-815.	6.0	21
281	Multiplexed Readout of Enzymatic Reactions by Means of Laterally Resolved Illumination of Quantum Dot Electrodes. ACS Applied Materials & Interfaces, 2019, 11, 21830-21839.	4.0	21
282	Photoluminescence of Fully Inorganic Colloidal Gold Nanocluster and Their Manipulation Using Surface Charge Effects. Advanced Materials, 2021, 33, e2101549.	11.1	21
283	Photoluminescence quantum yield of CdSe-ZnS/CdS/ZnS core-multishell quantum dots approaches 100% due to enhancement of charge carrier confinement. Proceedings of SPIE, 2014, , .	0.8	20
284	The Effect of Surface Coating of Iron Oxide Nanoparticles on Magnetic Resonance Imaging Relaxivity. Frontiers in Nanotechnology, 2021, 3, .	2.4	20
285	Getting Across the Plasma Membrane and Beyond: Intracellular Uses of Colloidal Semiconductor Nanocrystals. Journal of Biomedicine and Biotechnology, 2007, 2007, 1-9.	3.0	19
286	Relaxation times of colloidal iron platinum in polymer matrixes. Journal of Materials Chemistry, 2009, 19, 6381.	6.7	19
287	Multiplexed measurements by time resolved spectroscopy using colloidal CdSe/ZnS quantum dots. Applied Physics Letters, 2014, 104, 041901.	1.5	19
288	Modeling Nanoparticle–Alveolar Epithelial Cell Interactions under Breathing Conditions Using Captive Bubble Surfactometry. Langmuir, 2014, 30, 4924-4932.	1.6	19

#	Article	IF	CITATIONS
289	Some thoughts about the intracellular location of nanoparticles and the resulting consequences. Journal of Colloid and Interface Science, 2016, 482, 260-266.	5.0	19
290	Regeneration of arsenic spent adsorbents by Fe/ <scp>MgO</scp> nanoparticles. Journal of Chemical Technology and Biotechnology, 2017, 92, 1876-1883.	1.6	19
291	Biodegradable Alginate Polyelectrolyte Capsules As Plausible Biocompatible Delivery Carriers. ACS Applied Bio Materials, 2019, 2, 3245-3256.	2.3	19
292	Sustainable Synthesis and Improved Colloidal Stability of Popcorn-Shaped Gold Nanoparticles. ACS Sustainable Chemistry and Engineering, 2019, 7, 9834-9841.	3.2	19
293	Multimodal Imaging of Pancreatic Ductal Adenocarcinoma Using Multifunctional Nanoparticles as Contrast Agents. ACS Applied Materials & Interfaces, 2020, 12, 53665-53681.	4.0	19
294	Metabolic activation stimulates acid production in synovial fibroblasts. Journal of Rheumatology, 2000, 27, 2312-22.	1.0	19
295	Antimicrobial Hydantoinâ€Containing Polyesters. Macromolecular Bioscience, 2012, 12, 1068-1076.	2.1	18
296	Silicon particles as trojan horses for potential cancer therapy. Journal of Nanobiotechnology, 2014, 12, 35.	4.2	18
297	Homogeneous Protein Analysis by Magnetic Core–Shell Nanorod Probes. ACS Applied Materials & Interfaces, 2016, 8, 8893-8899.	4.0	18
298	Novel fluorinated ligands for gold nanoparticle labelling with applications in ¹⁹ F-MRI. Chemical Communications, 2017, 53, 2447-2450.	2.2	18
299	Involvement of two uptake mechanisms of gold and iron oxide nanoparticles in a co-exposure scenario using mouse macrophages. Beilstein Journal of Nanotechnology, 2017, 8, 2396-2409.	1.5	18
300	Measuring Cell Motility Using Quantum Dot Probes. , 2007, 374, 125-132.		17
301	Europium-quantum dot nanobioconjugates as luminescent probes for time-gated biosensing. Journal of Biomedical Optics, 2014, 19, 101506.	1.4	17
302	Catalysis by multifunctional polyelectrolyte capsules. RSC Advances, 2016, 6, 81569-81577.	1.7	17
303	Design of pyridyl-modified amphiphilic polymeric ligands: Towards better passivation of water-soluble colloidal quantum dots for improved optical performance. Journal of Colloid and Interface Science, 2016, 478, 88-96.	5.0	17
304	Real-time, label-free monitoring of cell viability based on cell adhesion measurements with an atomic force microscope. Journal of Nanobiotechnology, 2017, 15, 23.	4.2	17
305	Polymer-coated nanoparticles: Carrier platforms for hydrophobic water- and air-sensitive metallo-organic compounds. Pharmacological Research, 2017, 117, 261-266.	3.1	17
306	Toward an optically controlled brain. Science, 2018, 359, 633-634.	6.0	17

#	Article	IF	CITATIONS
307	Investigating Possible Enzymatic Degradation on Polymer Shells around Inorganic Nanoparticles. International Journal of Molecular Sciences, 2019, 20, 935.	1.8	17
308	Hyperspectral-enhanced dark field analysis of individual and collective photo-responsive gold–copper sulfide nanoparticles. Nanoscale, 2021, 13, 13256-13272.	2.8	17
309	Effects of semiconductor substrate and glia-free culture on the development of voltage-dependent currents in rat striatal neurones. European Biophysics Journal, 2001, 29, 607-620.	1.2	16
310	Nano as a Rosetta Stone: The Global Roles and Opportunities for Nanoscience and Nanotechnology. ACS Nano, 2019, 13, 10853-10855.	7.3	16
311	Redefining the Experimental and Methods Sections. ACS Nano, 2019, 13, 4862-4864.	7.3	16
312	Biodegradation of Bi-Labeled Polymer-Coated Rare-Earth Nanoparticles in Adherent Cell Cultures. Chemistry of Materials, 2020, 32, 245-254.	3.2	16
313	Gold Nanostars: Synthesis, Optical and SERS Analytical Properties. Analysis & Sensing, 2022, 2, .	1.1	16
314	Detection of CO2 in solution with a Pt–NiO solid-state sensor. Journal of Colloid and Interface Science, 2010, 348, 227-231.	5.0	15
315	Förster resonance energy transfer mediated enhancement of the fluorescence lifetime of organic fluorophores to the millisecond range by coupling to Mn-doped CdS/ZnS quantum dots. Nanotechnology, 2016, 27, 055101.	1.3	15
316	Aqueous Stable Gold Nanostar/ZIFâ€8 Nanocomposites for Lightâ€Triggered Release of Active Cargo Inside Living Cells. Angewandte Chemie, 2019, 131, 7152-7156.	1.6	15
317	Quantitative Assessment of Endosomal Escape of Various Endocytosed Polymerâ€Encapsulated Molecular Cargos upon Photothermal Heating. Small, 2020, 16, e2003639.	5.2	15
318	Toward Diffusion Measurements of Colloidal Nanoparticles in Biological Environments by Nuclear Magnetic Resonance. Small, 2020, 16, e2001160.	5.2	15
319	The effect of PEG-coated gold nanoparticles on the anti-proliferative potential of Specific Nutrient Synergy. Nanotoxicology, 2010, 4, 177-185.	1.6	14
320	Polymer Capsules as a Theranostic Tool for a Universal In Vitro Screening Assay-The Case of Lysosomal Storage Diseases. Particle and Particle Systems Characterization, 2015, 32, 991-998.	1.2	14
321	Investigation of the Viability of Cells upon Co-Exposure to Gold and Iron Oxide Nanoparticles. Bioconjugate Chemistry, 2018, 29, 2120-2125.	1.8	14
322	In depth characterisation of the biomolecular coronas of polymer coated inorganic nanoparticles with differential centrifugal sedimentation. Scientific Reports, 2021, 11, 6443.	1.6	14
323	Quantum Dot-Based Cell Motility Assay. Science Signaling, 2005, 2005, pl5-pl5.	1.6	13
324	Nanoparticle-functionalized microcapsules for in vitro delivery and sensing. Nanophotonics, 2012, 1, 171-180.	2.9	13

#	Article	IF	CITATIONS
325	Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomaterialia, 2017, 55, 204-213.	4.1	13
326	Electron Energy‣oss Spectroscopy of Spatial Nonlocality and Quantum Tunneling Effects in the Bright and Dark Plasmon Modes of Gold Nanosphere Dimers. Advanced Quantum Technologies, 2018, 1, 1800016.	1.8	13
327	Origin of Laser-Induced Colloidal Gold Surface Oxidation and Charge Density, and Its Role in Oxidation Catalysis. Journal of Physical Chemistry C, 2020, 124, 20981-20990.	1.5	13
328	Introducing visible-light sensitivity into photocatalytic CeO ₂ nanoparticles by hybrid particle preparation exploiting plasmonic properties of gold: enhanced photoelectrocatalysis exemplified for hydrogen peroxide sensing. Nanoscale, 2021, 13, 980-990.	2.8	13
329	Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications. ACS Applied Nano Materials, 2021, 4, 6678-6688.	2.4	13
330	Subcellular Carrier-Based Optical Ion-Selective Nanosensors. Frontiers in Pharmacology, 2012, 3, 70.	1.6	12
331	Bombardment induced ion transport – part IV: ionic conductivity of ultra-thin polyelectrolyte multilayer films. Physical Chemistry Chemical Physics, 2016, 18, 4345-4351.	1.3	12
332	Up-Conversion Luminescence Properties of Lanthanide-Gold Hybrid Nanoparticles as Analyzed with Discrete Dipole Approximation. Nanomaterials, 2018, 8, 989.	1.9	12
333	Surface Engineering of Gold Nanoclusters Protected with 11-Mercaptoundecanoic Acid for Photoluminescence Sensing. ACS Applied Nano Materials, 2021, 4, 3197-3203.	2.4	12
334	Paper-based plasmonic substrates as surface-enhanced Raman scattering spectroscopy platforms for cell culture applications. Materials Today Bio, 2021, 11, 100125.	2.6	12
335	The field-effect-addressable potentiometric sensor/stimulator (FAPS)—a new concept for a surface potential sensor and stimulator with spatial resolution. Sensors and Actuators B: Chemical, 1999, 58, 497-504.	4.0	11
336	Structural characterization of zirconium isopropoxide precursors modified by di- and trichloroacetic acids. Inorganica Chimica Acta, 2006, 359, 4511-4518.	1.2	11
337	Basic Physicochemical Properties of Polyethylene Glycol Coated Gold Nanoparticles that Determine Their Interaction with Cells. Angewandte Chemie, 2016, 128, 5573-5577.	1.6	11
338	Optical sensing by integration of analyte-sensitive fluorophore to particles. TrAC - Trends in Analytical Chemistry, 2016, 84, 84-96.	5.8	11
339	Accelerating Advances in Science, Engineering, and Medicine through Nanoscience and Nanotechnology. ACS Nano, 2017, 11, 3423-3424.	7.3	11
340	Direct protein quantification in complex sample solutions by surface-engineered nanorod probes. Scientific Reports, 2017, 7, 4752.	1.6	11
341	Influence of the Modulation of the Protein Corona on Gene Expression Using Polyethylenimine (PEI) Polyplexes as Delivery Vehicle. Advanced Healthcare Materials, 2021, 10, e2100125.	3.9	11
342	Metal nanoclusterâ€based devices: Challenges and opportunities. Aggregate, 2022, 3, e132.	5.2	11

#	Article	IF	CITATIONS
343	Synthesis and perspectives of complex crystalline nano-structures. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1329-1336.	0.8	10
344	Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles. Sensors, 2011, 11, 11335-11342.	2.1	10
345	Cellular uptake and cell-to-cell transfer of polyelectrolyte microcapsules within a triple co-culture system representing parts of the respiratory tract. Science and Technology of Advanced Materials, 2015, 16, 034608.	2.8	10
346	X-ray Fluorescence Uptake Measurement of Functionalized Gold Nanoparticles in Tumor Cell Microsamples. International Journal of Molecular Sciences, 2021, 22, 3691.	1.8	10
347	Stimulation of Local Cytosolic Calcium Release by Photothermal Heating for Studying Intra―and Intercellular Calcium Waves. Advanced Materials, 2021, 33, e2008261.	11.1	10
348	Ion Transport Through Polyelectrolyte Multilayers. Macromolecular Rapid Communications, 2013, 34, 1820-1826.	2.0	9
349	Determination of the ratio of fluorophore/nanoparticle for fluorescence-labelled nanoparticles. Analyst, The, 2016, 141, 1266-1272.	1.7	9
350	Enhanced Terahertz Radiation Generation of Photoconductive Antennas Based on Manganese Ferrite Nanoparticles. Scientific Reports, 2017, 7, 46261.	1.6	9
351	Introducing Students to Surface Modification and Phase Transfer of Nanoparticles with a Laboratory Experiment. Journal of Chemical Education, 2017, 94, 769-774.	1.1	9
352	Multiplexed Fluorophore-Nanoparticle Hybrids for Extending the Range of pH Measurements. Small Methods, 2017, 1, 1700153.	4.6	9
353	Light-Driven Chloride Transport Kinetics of Halorhodopsin. Biophysical Journal, 2018, 115, 353-360.	0.2	9
354	Luminescent silver nanoclusters decorated on ZnO tetrapods: a detailed understanding of their role in photoluminescence features. Journal of Materials Chemistry C, 2021, 9, 7014-7026.	2.7	9
355	Chloroform- and Water-Soluble Sol–Gel Derived \$hbox{Eu}^{+++}/hbox{Y}_{{m 2}hbox{O}_{{m 3}}\$ (Red) and \$hbox{Tb}^{+++}/hbox{Y}_{{m 2}hbox{O}_{{m 3}}\$ (Green) Nanophosphors: Synthesis, Characterization, and Surface Modification. IEEE Transactions on Nanobioscience, 2009, 8, 43-50.	2.2	8
356	Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices. Physical Chemistry Chemical Physics, 2011, 13, 9973.	1.3	8
357	Enhanced photocurrent generation with quantum dots containing multilayers on gold. Electrochimica Acta, 2011, 56, 6397-6400.	2.6	8
358	Fluorescence-based ion-sensing with colloidal particles. Current Opinion in Pharmacology, 2014, 18, 98-103.	1.7	8
359	Taking Advantage of Hydrophobic Fluorine Interactions for Selfâ€Assembled Quantum Dots as a Delivery Platform for Enzymes. Angewandte Chemie, 2018, 130, 5127-5130.	1.6	8
360	Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1307-1317.	1.4	8

#	Article	IF	CITATIONS
361	Functionalization of colloidal nanoparticles with a discrete number of ligands based on a "HALO-bioclick―reaction. Chemical Communications, 2020, 56, 11398-11401.	2.2	8
362	In-situ x-ray fluorescence imaging of the endogenous iodine distribution in murine thyroids. Scientific Reports, 2022, 12, 2903.	1.6	8
363	Characterization of the field-effect addressable potentiometric sensor (FAPS). Sensors and Actuators B: Chemical, 2000, 68, 266-273.	4.0	7
364	Growth mechanism, shape and composition control of semiconductor nanocrystals. , 2008, , 1-34.		7
365	Alloy metal nanoparticles for multicolor cancer diagnostics. , 2011, , .		7
366	Nanoscience and Nanotechnology around the World. ACS Nano, 2016, 10, 4883-4884.	7.3	7
367	Dynamic Extracellular Imaging of Biochemical Cell Activity Using InGaN/GaN Nanowire Arrays as Nanophotonic Probes. Advanced Functional Materials, 2018, 28, 1802503.	7.8	7
368	Development of Silica-Based Biodegradable Submicrometric Carriers and Investigating Their Characteristics as in Vitro Delivery Vehicles. International Journal of Molecular Sciences, 2020, 21, 7563.	1.8	7
369	Toward an on-chip multiplexed nucleic acid hybridization assay using immobilized quantum dot-oligonucleotide conjugates and fluorescence resonance energy transfer. Proceedings of SPIE, 2011, , .	0.8	6
370	Methods for Understanding the Interaction Between Nanoparticles and Cells. Methods in Molecular Biology, 2012, 926, 33-56.	0.4	6
371	A Year for Nanoscience. ACS Nano, 2014, 8, 11901-11903.	7.3	6
372	Adaptive metabolic pattern biomarker for disease monitoring and staging of lung cancer with liquid biopsy. Npj Precision Oncology, 2018, 2, 16.	2.3	6
373	Colloidal stability of polymer coated zwitterionic Au nanoparticles in biological media. Inorganica Chimica Acta, 2022, 534, 120820.	1.2	6
374	Food-Grade Titanium Dioxide Induces Toxicity in the Nematode Caenorhabditis elegans and Acute Hepatic and Pulmonary Responses in Mice. Nanomaterials, 2022, 12, 1669.	1.9	6
375	Biocompatible water soluble UV-blue-emitting ZnSe quantum dots for biomedical applications. Proceedings of SPIE, 2010, , .	0.8	5
376	Characterizing the Multidisciplinarity of Nanoscience Research. ACS Nano, 2010, 4, 4333-4334.	7.3	5
377	Compact and highly stable quantum dots through optimized aqueous phase transfer. Proceedings of SPIE, 2011, , .	0.8	5
378	Synthesis of NaYF 4 : Yb3+/Er3+upconverting nanocrystals in a capillary-based continuous		5

microfluidic reaction system. , 2011, , .

#	Article	IF	CITATIONS
379	Be Critical but Fair. ACS Nano, 2013, 7, 8313-8316.	7.3	5
380	Study of Fluorinated Quantum Dots-Protein Interactions at the Oil/Water Interface by Interfacial Surface Tension Changes. Materials, 2018, 11, 750.	1.3	5
381	Mechanistic insights and selected synthetic routes of atomically precise metal nanoclusters. Nano Select, 2021, 2, 831-846.	1.9	5
382	Quantitative considerations about the size dependence of cellular entry and excretion of colloidal nanoparticles for different cell types. ChemTexts, 2022, 8, 9.	1.0	5
383	QUANTUM DOT APPLICATIONS IN BIOTECHNOLOGY: PROGRESS AND CHALLENGES. Annual Review of Nano Research, 2006, , 467-530.	0.2	4
384	MRI contrast enhancement potential of different superparamagnetic iron oxide nanoparticle (SPION) formulations. Journal of Controlled Release, 2010, 148, e67-e68.	4.8	4
385	Virtual Issue on Nanotoxicology. ACS Nano, 2010, 4, 5513-5514.	7.3	4
386	Quantum dots as a FRET donor and nanoscaffold for multivalent DNA photonic wires. Proceedings of SPIE, 2011, , .	0.8	4
387	Luminescent rare earth vanadate nanoparticles doped with Eu ³⁺ and Bi ³ for sensing and imaging applications. Proceedings of SPIE, 2016, , .	0.8	4
388	Nanoscience and Nanotechnology Cross Borders. ACS Nano, 2017, 11, 1123-1126.	7.3	4
389	Understanding the Interaction of Glutamate Salts with Serum Albumin Protected Prismâ€Shaped Silver Nanoparticles toward Glutamate Sensing. Particle and Particle Systems Characterization, 2019, 36, 1800229.	1.2	4
390	Liposome-based measurement of light-driven chloride transport kinetics of halorhodopsin. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183637.	1.4	4
391	Aqueous-Based Silica Nanoparticles as Carriers for Catalytically Active Biomacromolecules. ACS Applied Nano Materials, 2021, 4, 9060-9067.	2.4	4
392	Rapid templateâ€guided ligandâ€free synthesis of ultrasmall Pt nanoclusters with efficient hydrogen evolution reaction activity and their versatile release. Nano Select, 2021, 2, 758-767.	1.9	4
393	A Virtual Issue on Nanomedicine. ACS Nano, 2021, 15, 15397-15401.	7.3	4
394	Quantum dot-fluorescent protein pair as ratiometric pH sensor. Proceedings of SPIE, 2010, , .	0.8	3
395	Bridging the fields of nanoscience and toxicology: nanoparticle impact on biological models. Proceedings of SPIE, 2011, , .	0.8	3
396	We Take It Personally. ACS Nano, 2012, 6, 10417-10419.	7.3	3

#	Article	IF	CITATIONS
397	Investigating Nanoparticle Internalization Patterns by Quantitative Correlation Analysis of Microscopy Imaging Data. Frontiers of Nanoscience, 2012, , 181-196.	0.3	3
398	Iron oxide nanoparticles in different modifications for antimicrobial phototherapy. , 2014, , .		3
399	Gold nanoparticles based colorimetric nanodiagnostics for cancer and infectious diseases. Proceedings of SPIE, 2014, , .	0.8	3
400	Some Food for Thought on Nanoeducation. ACS Nano, 2014, 8, 1075-1077.	7.3	3
401	Optical biosensor technologies for molecular diagnostics at the point-of-care. , 2015, , .		3
402	Grand Plans for Nano. ACS Nano, 2015, 9, 11503-11505.	7.3	3
403	Nonradioactive Cell Assay for the Evaluation of Modular Prostate-Specific Membrane Antigen Targeting Ligands via Inductively Coupled Plasma Mass Spectrometry. Journal of Medicinal Chemistry, 2019, 62, 10912-10918.	2.9	3
404	Metabolic pathway for the universal fluorescent recognition of tumor cells. Oncotarget, 2017, 8, 76108-76115.	0.8	3
405	Deducing the cellular mechanisms associated with the potential genotoxic impact of gold and silver engineered nanoparticles upon different lung epithelial cell lines inÂvitro. Nanotoxicology, 2022, , 1-21.	1.6	3
406	Semiconductor Nanoplatelets as Ultra-Bright Fluorophores for Two-Photon Absorption Cell Imaging. Journal of Physical Chemistry C, 2022, 126, 5658-5664.	1.5	3
407	Delivery of quantum dot bioconjugates to the cellular cytosol: release from the endolysosomal system. , 2010, , .		2
408	Synthesis and manipulation of multifunctional, fluorescent-magnetic nanoparticles for single molecule tracking. Proceedings of SPIE, 2010, , .	0.8	2
409	Synthesis and surface modification of highly fluorescent gold nanoclusters and their exploitation for cellular labeling. , 2010, , .		2
410	Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level. , 2010, , .		2
411	Size determination of quantum dots with fluorescence correlation spectroscopy. Proceedings of SPIE, 2011, , .	0.8	2
412	Imaging heterostructured quantum dots in cultured cells with epifluorescence and transmission electron microscopy. , 2011, 7909, 79090N.		2
413	Microwaves and nanoparticles: from synthesis to imaging. Proceedings of SPIE, 2011, , .	0.8	2
414	Locally increased mortality of gamma-irradiated cells in presence of lanthanide-halide nanoparticles. Proceedings of SPIE, 2011, , .	0.8	2

#	Article	IF	CITATIONS
415	Plasmonic Ag/SiO 2 composite nanoparticles doped with europium chelate and their metal enhanced fluorescence. Proceedings of SPIE, 2011, , .	0.8	2
416	Quantum dots-based nanobiosensors for simultaneous dynamic measurements of multiple intracellular ion concentrations. Proceedings of SPIE, 2012, , .	0.8	2
417	Announcing the Recipients of the 2012 <i>ACS Nano</i> Lectureship Awards. ACS Nano, 2012, 6, 987-989.	7.3	2
418	Specific markers, micro-environmental anomalies and tropism: opportunities for gold nanorods targeting of tumors in laser-induced hyperthermia. , 2014, , .		2
419	Plasmonic biodegradable gold nanoclusters with high NIR-absorbance for biomedical imaging. Proceedings of SPIE, 2014, , .	0.8	2
420	Impact of solvent mixture on iron nanoparticles generated by laser ablation. , 2014, , .		2
421	Iron-oxide colloidal nanoclusters: from fundamental physical properties to diagnosis and therapy. , 2014, , .		2
422	Noncytotoxic Mn-doped ZnSe/ZnS quantum dots for biomedical applications. Proceedings of SPIE, 2014, , .	0.8	2
423	Nanomedicine: Back to Basics: Exploiting the Innate Physicoâ€chemical Characteristics of Nanomaterials for Biomedical Applications (Adv. Funct. Mater. 38/2014). Advanced Functional Materials, 2014, 24, 5930-5930.	7.8	2
424	Translational Research: Bridging the Gap between Fundamental Research and the Clinic. Bioconjugate Chemistry, 2019, 30, 2989-2990.	1.8	2
425	Ion Selective Transport of Alkali Ions through a Polyelectrolyte Membrane. Advanced Materials Interfaces, 2020, 7, 2000419.	1.9	2
426	Biodegradable particles for protein delivery: Estimation of the release kinetics inside cells. , 2022, 139, 212966.		2
427	2314.1 Board # B690.1 – Biological Applications of Colloidal Nanocrystals. Biophysical Journal, 2003, 84, 3489.	0.2	1
428	Biocompatible water soluble quantum dots as new biophotonic tools for hematologic cells: applications for flow cell cytometry. Proceedings of SPIE, 2010, , .	0.8	1
429	Optical size determination of quantum dots using FRET with terbium complexes as donors. , 2010, , .		1
430	Radiation sensitivity enhancement in cells using high-Z nanoparticles. Proceedings of SPIE, 2010, , .	0.8	1
431	Time-resolved and steady-state FRET spectroscopy on commercial biocompatible quantum dots. , 2011, , .		1
432	Tailoring biocompatible Fe3O4 nanoparticles for applications to magnetic hyperthermia. , 2012, , .		1

#	Article	IF	CITATIONS
433	Small NIR-to-VIS upconverting nanoparticles for photodynamic therapyist. , 2012, , .		1
434	Biomedical tools based on magnetic nanoparticles. Proceedings of SPIE, 2013, , .	0.8	1
435	Exciting Times for Nano. ACS Nano, 2013, 7, 10437-10439.	7.3	1
436	O ₆ -alkylguanine-DNA transferase (SNAP) as capture module for site-specific covalent bioconjugation of targeting protein on nanoparticles. Proceedings of SPIE, 2013, , .	0.8	1
437	Bioanalytics using single plasmonic nanostructures. Proceedings of SPIE, 2013, , .	0.8	1
438	Plasmonics with silver nanowires: plasmons affect the energy transfer. Proceedings of SPIE, 2014, , .	0.8	1
439	Shielding of quantum dots using diblock copolymers: implementing copper catalyzed click chemistry to fluorescent quantum dots. , 2014, , .		1
440	Surface plasmon influence on two-photon luminescence from single gold nanorods. , 2014, , .		1
441	Intracellular light-induced release of signaling molecules from gold-coated liposomes. Proceedings of SPIE, 2014, , .	0.8	1
442	Drug Delivery: The Application of Stimuli-Responsive VEGF- and ATP-Aptamer-Based Microcapsules for the Controlled Release of an Anticancer Drug, and the Selective Targeted Cytotoxicity toward Cancer Cells (Adv. Funct. Mater. 24/2016). Advanced Functional Materials, 2016, 26, 4423-4423.	7.8	1
443	A Big Year Ahead for Nano in 2018. ACS Nano, 2017, 11, 11755-11757.	7.3	1
444	Structure and Thermal Stability of Stilbenedithiol SAMs on Au(111). Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1700859.	0.8	1
445	Nanoscience and Nanotechnology at the Centennial of UniversitäHamburg. ACS Nano, 2019, 13, 1-3.	7.3	1
446	Tutorials and Articles on Best Practices. ACS Nano, 2020, 14, 10751-10753.	7.3	1
447	Colloids for nanobiotechnology: An introduction. Frontiers of Nanoscience, 2020, 16, 1-7.	0.3	1
448	In Vitro Cellular Uptake Studies of Self-Assembled Fluorinated Nanoparticles Labelled with Antibodies. Nanomaterials, 2021, 11, 1906.	1.9	1
449	Microscopy-Based High-Throughput Analysis of Cells Interacting with Nanostructures. , 2016, , 99-115.		1
450	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1

0

#	ARTICLE	IF	CITATIONS
451	Nanogold-embedded poly (vinylidene fluoride) fibrous membrane for selective sensing of Hg (II) ion. Materials Chemistry and Physics, 2022, 281, 125862.	2.0	1
452	Pathways Related to NLRP3 Inflammasome Activation Induced by Gold Nanorods. International Journal of Molecular Sciences, 2022, 23, 5763.	1.8	1
453	Nanoparticle-Based Delivery and Biosensing Systems: An Example. , 0, , 247-274.		0
454	In vitro imaging of cells using peptide-conjugated quantum dots. , 2010, , .		0
455	Studying nanotoxic effects of CdTe quantum dots in Trypanosoma cruzi. Proceedings of SPIE, 2010, , .	0.8	0
456	Energy transfer from terbium complexes to quantum dots: the advantage of independent donor and acceptor decay time analysis for investigations on FRET distance dependence. Proceedings of SPIE, 2010, , .	0.8	0
457	Silica capped CdS/Cd(OH) 2 quantum dots for biological applications. , 2010, , .		0
458	Silver nanoparticle-induced degranulation observed with quantitative phase microscopy. Proceedings of SPIE, 2010, , .	0.8	0
459	Re-disperse of aggregated colloidal quantum dots. Proceedings of SPIE, 2010, , .	0.8	ο
460	Three-dimensional single molecule tracking of quantum-dot labeled antibody molecules using multifocal plane microscopy. Proceedings of SPIE, 2010, 7575, .	0.8	0
461	Cellular uptake of conjugated InP quantum dots. , 2010, , .		0
462	Immobilization of quantum dots in multiple responsive microgels for biomedical applications. Proceedings of SPIE, 2010, , .	0.8	0
463	Different Types of Lateral Diffusion Measurements Reveal that Unlike HA, Dc-SIGN is Immobilized in Microdomains. Biophysical Journal, 2010, 98, 306a.	0.2	0
464	Quantum-dot-based quantitative identification of pathogens in complex mixture. , 2010, , .		0
465	Interactions between a colloidal CdTe quantum dot and distinct functionalizer compounds. , 2010, , .		ο
466	ACS Nano in 2011 and Looking Forward to 2012. ACS Nano, 2011, 5, 9301-9302.	7.3	0
467	State of the art toxicological and microscopic assessment of biomedical nanocrystals on the lung in vitro. , 2011, , .		0

468 Size- and structure-dependent toxicity of silica particulates. , 2011, , .

#	Article	IF	CITATIONS
469	Nanoscale plasmonic resonators with high Purcell factor: spontaneous and stimulated emission. , 2011, , .		0
470	Size and surface chemistry of Au nanoparticles determine doxorubicin cytotoxicity. Proceedings of SPIE, 2011, , .	0.8	0
471	Gold nanoparticles in biomedical applications. , 2011, , .		0
472	Immobilization of CdSe/ZnS quantum dots on glass beads for the detection of nucleic acid hybridization using fluorescence resonance energy transfer. Proceedings of SPIE, 2011, , .	0.8	0
473	Stable gold nanocolloids with controllable surface modification and functionalization. Proceedings of SPIE, 2012, , .	0.8	0
474	Synthesis and characterization of fluorescent dyes-magnetic nanoparticles for bioimaging applications. Proceedings of SPIE, 2012, , .	0.8	0
475	Protein Adsorption onto FePt Nanoparticles Investigated by Dual-Focus Fluorescence Correlation Spectroscopy. Biophysical Journal, 2012, 102, 401a.	0.2	0
476	Special Section Guest Editorial: Biomimetic and Bioinspired Materials for Applications in Biophotonics. Journal of Biomedical Optics, 2014, 19, 101501.	1.4	0
477	The use of real-time optical feedback to improve outcomes. Proceedings of SPIE, 2014, , .	0.8	0
478	Evaluation of quantum dot-based concentric FRET configurations with a fluorescent dye and dark quencher for multiplexed bioanalyses. Proceedings of SPIE, 2014, , .	0.8	0
479	Interactions of gold nanoparticles with biological structures. , 2014, , .		0
480	Photoirradiation study of gold nanospheres and rods in Vero and Hela cell lines. , 2014, , .		0
481	Lipid-modified dendrimers as a tool for the design of nanoparticle-based multimodal MRI contrast agents. , 2014, , .		0
482	Nanocapsules of perfluorooctyl bromide for theranostics: from formulation to targeting. , 2014, , .		0
483	Thin film mesoscale organization of nanoparticles by using biomolecular peptide tools. , 2014, , .		0
484	Integrated optical waveguide and nanoparticle based label-free molecular biosensing concepts. , 2014, ,		0
485	Multidentate oligomeric ligands to enhance the biocompatibility of iron oxide and other metal nanoparticles. Proceedings of SPIE, 2014, , .	0.8	0
486	Combining ligand design and photo-ligation to provide optimal quantum dot-bioconjugates for sensing and imaging. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
487	Light-addressable amperometric electrodes for enzyme sensors based on direct quantum dot-electrode contacts. , 2014, , .		0
488	Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy. , 2014, , .		0
489	Investigation of magnetic field enriched surface enhanced resonance Raman scattering performance using Fe ₃ O ₄ @Ag nanoparticles for malaria diagnosis. Proceedings of SPIE, 2014, , .	0.8	0
490	Multidentate polymeric ligands for long-term bioimaging using highly stable and functionalized quantum dots. Proceedings of SPIE, 2014, , .	0.8	0
491	Peptide-modified gold nanoparticles for improved cancer therapeutics. Proceedings of SPIE, 2014, , .	0.8	0
492	Derivatization of Colloidal Gold Nanoparticles Toward Their Application in Life Sciences11This chapter is an adopted version based on the PhD thesis of Dominik Hühn as submitted at the Philipps UniversitäMarburg Comprehensive Analytical Chemistry, 2014, 66, 153-206.	0.7	0
493	Toward efficient modification of large gold nanoparticles with DNA. , 2014, , .		0
494	Interaction of colloidal nanoparticles with cells (Conference Presentation). , 2017, , .		0
495	Our First and Next Decades at ACS Nano. ACS Nano, 2017, 11, 7553-7555.	7.3	0
496	Synthesis and Surface Engineering of Gold Nanoparticles, and Their Potential Applications in Bionanotechnology. , 2017, , .		0
497	Helmuth Möhwald (1946–2018). ACS Nano, 2018, 12, 3053-3055.	7.3	0
498	Analyse quantitativer Partikelaufnahme von Zellen über verschiedene Messmethoden. Angewandte Chemie, 2020, 132, 5478-5494.	1.6	0
499	Quantification of the interaction of colloidal nanoparticles with biological environment. , 0, , .		0
500	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	7.3	0