Ka Yu Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981436/publications.pdf

Version: 2024-02-01

201385 233125 2,232 77 27 45 h-index citations g-index papers 77 77 77 2455 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sequential removal of selenate, nitrate and sulfate and recovery of elemental selenium in a multi-stage bioreactor process with redox potential feedback control. Journal of Hazardous Materials, 2022, 424, 127539.	6.5	4
2	Long-term performance of a full-scale intermittently decanted extended aeration (IDEA) plant: The effect of dissolved oxygen and the relocation of alum dosing to bioselector. Journal of Environmental Management, 2022, 302, 113915.	3.8	0
3	Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control. Journal of Hazardous Materials, 2021, 402, 123770.	6.5	10
4	Effect of Initial Cell Concentration on Bio-Oxidation of Pyrite before Gold Cyanidation. Minerals (Basel, Switzerland), 2021, 11, 834.	0.8	4
5	E-Waste Recycling and Resource Recovery: A Review on Technologies, Barriers and Enablers with a Focus on Oceania. Metals, 2021, 11, 1313.	1.0	64
6	Inverse fluidised bed bioreactor enabled high-rate selenate reduction for wastewater treatment. Environmental Advances, 2021, 5, 100106.	2.2	4
7	Treatment of neutral gold mine drainage by sequential in situ hydrotalcite precipitation, and microbial sulfate and cyanide removal. Science of the Total Environment, 2021, 801, 149613.	3.9	3
8	A Comparison of Methods for the Characterisation of Waste-Printed Circuit Boards. Metals, 2021, 11, 1935.	1.0	12
9	High-rate microbial selenate reduction in an up-flow anaerobic fluidized bed reactor (FBR). Science of the Total Environment, 2020, 749, 142359.	3.9	6
10	Potential of metals leaching from printed circuit boards with biological and chemical lixiviants. Hydrometallurgy, 2020, 196, 105433.	1.8	29
11	Insights drawn from a full-scale Intermittently Decanted Extended Aeration (IDEA) plant for optimising nitrogen and phosphorus removal from municipal wastewater. Science of the Total Environment, 2020, 744, 140576.	3.9	3
12	Prospective directions for biohydrometallurgy. Hydrometallurgy, 2020, 195, 105376.	1.8	67
13	Exploring the use of Dicranopteris pedata ash as a rare earth fertilizer to Ipomoea aquatica Forsskal. Journal of Hazardous Materials, 2020, 400, 123207.	6.5	8
14	Sequential hydrotalcite precipitation and biological sulfate reduction for acid mine drainage treatment. Chemosphere, 2020, 252, 126570.	4.2	35
15	Recovery of Metals from Waste Lithium Ion Battery Leachates Using Biogenic Hydrogen Sulfide. Minerals (Basel, Switzerland), 2019, 9, 563.	0.8	24
16	Risks of Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) for Sustainable Water Recycling via Aquifers. Water (Switzerland), 2019, 11, 1737.	1.2	23
17	Evidence for fungi and gold redox interaction under Earth surface conditions. Nature Communications, 2019, 10, 2290.	5.8	25
18	Simultaneous nitrification, denitrification and phosphorus recovery (SNDPr) - An opportunity to facilitate full-scale recovery of phosphorus from municipal wastewater. Journal of Environmental Management, 2019, 238, 41-48.	3.8	36

#	Article	IF	Citations
19	A novel storage driven granular post denitrification process: Long-term effects of volume reduction on phosphate recovery. Chemical Engineering Journal, 2019, 356, 534-542.	6.6	4
20	Kinetics of oxalate degradation in aerated packed-bed biofilm reactors under nitrogen supplemented and deficient conditions. Journal of Cleaner Production, 2019, 211, 270-280.	4.6	6
21	A new method for ranking potential hazards and risks from wastes. Journal of Hazardous Materials, 2019, 365, 778-788.	6.5	7
22	Microbial Electrochemical Remediation of Organic Contaminants. , 2019, , 613-640.		8
23	Re-visiting the Phostrip process to recover phosphorus from municipal wastewater. Chemical Engineering Journal, 2018, 343, 390-398.	6.6	28
24	Multistage leaching of metals from spent lithium ion battery waste using electrochemically generated acidic lixiviant. Waste Management, 2018, 74, 435-445.	3.7	30
25	Improvement of carbon usage for phosphorus recovery in EBPR-r and the shift in microbial community. Journal of Environmental Management, 2018, 218, 569-578.	3.8	16
26	Influences of pH and organic carbon on oxalate removal by alkaliphilic biofilms acclimatized to nitrogen-deficient and supplemented conditions. Journal of Cleaner Production, 2018, 187, 699-707.	4.6	3
27	Oxalate degradation by alkaliphilic biofilms acclimatised to nitrogenâ€supplemented and nitrogenâ€deficient conditions. Journal of Chemical Technology and Biotechnology, 2018, 93, 744-753.	1.6	5
28	Rapid start-up of a bioelectrochemical system under alkaline and saline conditions for efficient oxalate removal. Bioresource Technology, 2018, 250, 317-327.	4.8	12
29	Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems. Sensors and Actuators B: Chemical, 2018, 277, 526-534.	4.0	27
30	Increasing cell concentration does not affect specific ferrous iron oxidation rate in a continuously stirred tank bioreactor. Hydrometallurgy, 2018, 181, 189-194.	1.8	3
31	Urban mining of lithium-ion batteries in Australia: Current state and future trends. Minerals Engineering, 2018, 128, 45-55.	1.8	45
32	Recent progress in biohydrometallurgy and microbial characterisation. Hydrometallurgy, 2018, 180, 7-25.	1.8	137
33	The ability of PAOs to conserve their storage-driven phosphorus uptake activities during prolonged aerobic starvation conditions. Journal of Water Process Engineering, 2018, 23, 320-326.	2.6	7
34	Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. Journal of Hazardous Materials, 2018, 360, 504-511.	6.5	81
35	Sequential solid entrapment and in situ electrolytic alkaline hydrolysis facilitated reagent-free bioelectrochemical treatment of particulate-rich municipal wastewater. Water Research, 2017, 117, 18-26.	5. 3	2
36	Bioelectrochemical enhancement of anaerobic digestion: Comparing single- and two-chamber reactor configurations at thermophilic conditions. Bioresource Technology, 2017, 245, 1168-1175.	4.8	35

#	Article	IF	Citations
37	Bioelectrochemical oxidation of organics by alkali-halotolerant anodophilic biofilm under nitrogen-deficient, alkaline and saline conditions. Bioresource Technology, 2017, 245, 890-898.	4.8	7
38	Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review. Biotechnology Advances, 2017, 35, 758-771.	6.0	63
39	New method for characterizing electron mediators in microbial systems using a thin-layer twin-working electrode cell. Biosensors and Bioelectronics, 2017, 87, 531-536.	5.3	3
40	Integrating Microbial Electrochemical Technologies With Anaerobic Digestion for Waste Treatment. , 2017, , $191-221$.		6
41	Assessing the suitability of sediment-type bioelectrochemical systems for organic matter removal from municipal wastewater: a column study. Water Science and Technology, 2016, 74, 974-984.	1.2	3
42	A bio-anodic filter facilitated entrapment, decomposition and in situ oxidation of algal biomass in wastewater effluent. Bioresource Technology, 2016, 216, 529-536.	4.8	7
43	Bioelectrochemical system as an oxidising filter for soluble and particulate organic matter removal from municipal wastewater. Chemical Engineering Journal, 2016, 296, 225-233.	6.6	10
44	Influence of ionic conductivity in bioelectricity production from saline domestic sewage sludge in microbial fuel cells. Bioresource Technology, 2016, 200, 845-852.	4.8	53
45	The role of bacterial communities and carbon dioxide on the corrosion of steel. Corrosion Science, 2015, 98, 354-365.	3.0	34
46	Simultaneous phosphorus uptake and denitrification by EBPR-r biofilm under aerobic conditions: effect of dissolved oxygen. Water Science and Technology, 2015, 72, 1147-1154.	1.2	7
47	Ammonium-oxidizing bacteria facilitate aerobic degradation of sulfanilic acid in activated sludge. Water Science and Technology, 2014, 70, 1122-1128.	1.2	1
48	Biohydrometallurgical iron oxidation and precipitation: Part I $\hat{a} \in$ Effect of pH on process performance. Hydrometallurgy, 2014, 147-148, 255-263.	1.8	42
49	Enrichment of anodophilic nitrogen fixing bacteria in a bioelectrochemical system. Water Research, 2014, 64, 73-81.	5.3	23
50	Iron oxidation and jarosite precipitation in a two-stage airlift bioreactor. Hydrometallurgy, 2014, 150, 227-235.	1.8	27
51	Sequential in situ hydrotalcite precipitation and biological denitrification for the treatment of high-nitrate industrial effluent. Bioresource Technology, 2014, 172, 373-381.	4.8	24
52	A novel post denitrification configuration for phosphorus recovery using polyphosphate accumulating organisms. Water Research, 2013, 47, 6488-6495.	5.3	58
53	Bioelectricity production from food waste leachate using microbial fuel cells: Effect of NaCl and pH. Bioresource Technology, 2013, 149, 452-458.	4.8	80
54	Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochemistry, 2013, 48, 283-288.	1.8	108

#	Article	IF	Citations
55	Ammonia recycling enables sustainable operation of bioelectrochemical systems. Bioresource Technology, 2013, 143, 25-31.	4.8	48
56	Selective precipitation of metals from synthetic spent refinery catalyst leach liquor with biogenic H2S produced in a lactate-fed anaerobic baffled reactor. Hydrometallurgy, 2013, 139, 154-161.	1.8	31
57	Biological phosphorus and nitrogen removal in sequencing batch reactors: effects of cycle length, dissolved oxygen concentration and influent particulate matter. Water Science and Technology, 2013, 68, 982-990.	1.2	12
58	Application of Microbial Fuel Cells to Power Sensor Networks for Ecological Monitoring. Smart Sensors, Measurement and Instrumentation, 2013, , 151-178.	0.4	3
59	Biological recovery of phosphorus from municipal wastewater. Microbiology Australia, 2013, 34, 194.	0.1	2
60	Aerobic degradation of sulfanilic acid using activated sludge. Water Research, 2012, 46, 145-151.	5.3	23
61	Energy-efficient treatment of organic wastewater streams using a rotatable bioelectrochemical contactor (RBEC). Bioresource Technology, 2012, 126, 431-436.	4.8	24
62	Ano-Cathodophilic Biofilm Catalyzes Both Anodic Carbon Oxidation and Cathodic Denitrification. Environmental Science & Environ	4.6	63
63	Novel Methanogenic Rotatable Bioelectrochemical System Operated with Polarity Inversion. Environmental Science & Environmental	4.6	78
64	Ammonium as a sustainable proton shuttle in bioelectrochemical systems. Bioresource Technology, 2011, 102, 9691-9696.	4.8	115
65	Anodophilic Biofilm Catalyzes Cathodic Oxygen Reduction. Environmental Science & Emp; Technology, 2010, 44, 518-525.	4.6	97
66	A new approach for in situ cyclic voltammetry of a microbial fuel cell biofilm without using a potentiostat. Bioelectrochemistry, 2009, 74, 227-231.	2.4	21
67	Fate of 14C–Pyrene in soil–plant system amended with pig manure compost and Tween 80: A growth chamber study. Bioresource Technology, 2008, 99, 8406-8412.	4.8	17
68	Affinity of Microbial Fuel Cell Biofilm for the Anodic Potential. Environmental Science & Eamp; Technology, 2008, 42, 3828-3834.	4.6	90
69	Effects of pig manure compost and nonionic-surfactant Tween 80 on phenanthrene and pyrene removal from soil vegetated with Agropyron elongatum. Chemosphere, 2008, 73, 791-797.	4.2	73
70	Limitations of Bio-Hydrogen Production by Anaerobic Fermentation Process: An Overview., 2007,,.		3
71	Effect of Synthetic Surfactants on the Solubilization and Distribution of PAHs in Water/Soil-Water Systems. Environmental Technology (United Kingdom), 2006, 27, 835-844.	1.2	37
72	Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil–water system. Chemosphere, 2006, 62, 1907-1916.	4.2	86

Ka Yu Cheng

#	Article	IF	CITATIONS
73	Solubilization and Desorption of Pahs in Soilaqueous System by Biosurfactants Produced from <i>Pseudomonas Aeruginosa</i> P-CG3 Under Thermophilic Condition. Environmental Technology (United Kingdom), 2004, 25, 1159-1165.	1.2	27
74	Two-Stage Airlift Bioreactor System for Efficient Iron Oxidation and Jarosite Precipitation. Advanced Materials Research, 0, 825, 242-245.	0.3	0
75	Microbially Catalysed Selenate Removal in an Inverse Fluidised Bed Reactor. Solid State Phenomena, 0, 262, 677-681.	0.3	8
76	Recent Advances in Biomining and Microbial Characterisation. Solid State Phenomena, 0, 262, 33-37.	0.3	5
77	A three-chamber electrochemical cell facilitated biogas upgrading and high-purity oxygen production. Journal of Applied Electrochemistry, 0 , , 1 .	1.5	O