
Martin R Schiller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981163/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	XRCC4 and MRE11 Roles and Transcriptional Response to Repair of TALEN-Induced Double-Strand DNA Breaks. International Journal of Molecular Sciences, 2022, 23, 593.	1.8	1
2	Use of wastewater surveillance for early detection of Alpha and Epsilon SARS-CoV-2 variants of concern and estimation of overall COVID-19 infection burden. Science of the Total Environment, 2022, 835, 155410.	3.9	34
3	Identification and Functional Characterization of Metabolites for Bone Mass in Peri- and Postmenopausal Chinese Women. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3159-e3177.	1.8	14
4	Severe COVID-19 in Alzheimer's disease: APOE4's fault again?. Alzheimer's Research and Therapy, 2021, 1 111.	اع.0 ا	32
5	Single-cell RNA sequencing deconvolutes the <i>in vivo</i> heterogeneity of human bone marrow-derived mesenchymal stem cells. International Journal of Biological Sciences, 2021, 17, 4192-4206.	2.6	39
6	Identifying Pleiotropic SNPs Associated With Femoral Neck and Heel Bone Mineral Density. Frontiers in Genetics, 2020, 11, 772.	1.1	4
7	Diagnosis of COVIDâ€19 pneumonia despite missing detection of viral nucleic acid and initially inconspicuous radiologic findings. Journal of Medical Virology, 2020, 92, 2863-2865.	2.5	5
8	Coronavirus disease (COVID-19): observations and lessons from primary medical care at a German community hospital. Journal of Community Hospital Internal Medicine Perspectives, 2020, 10, 81-87.	0.4	5
9	Prioritization of Variants for Investigation of Genotype-Directed Nutrition in Human Superpopulations. International Journal of Molecular Sciences, 2019, 20, 3516.	1.8	7
10	Novel algorithms for LDD motif search. BMC Genomics, 2019, 20, 424.	1.2	2
11	Can Designer Indels Be Tailored by Gene Editing?. BioEssays, 2019, 41, 1900126.	1.2	3
12	The carboxy-terminus, a key regulator of protein function. Critical Reviews in Biochemistry and Molecular Biology, 2019, 54, 85-102.	2.3	42
13	Minimotif Miner 4: a million peptide minimotifs and counting. Nucleic Acids Research, 2018, 46, D465-D470.	6.5	15
14	Minimotifs dysfunction is pervasive in neurodegenerative disorders. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 414-432.	1.8	2
15	The minimotif synthesis hypothesis for the origin of life. Journal of Translational Science, 2016, 2, 289-296.	0.2	8
16	TALEN gene editing takes aim on HIV. Human Genetics, 2016, 135, 1059-1070.	1.8	46
17	The Functional Human C-Terminome. PLoS ONE, 2016, 11, e0152731.	1.1	11
18	Damaging the Integrated HIV Proviral DNA with TALENs. PLoS ONE, 2015, 10, e0125652.	1.1	34

MARTIN R SCHILLER

#	Article	IF	CITATIONS
19	Natural variability of minimotifs in 1092 people indicates that minimotifs are targets of evolution. Nucleic Acids Research, 2015, 43, 6399-6412.	6.5	6
20	The HIVToolbox 2 Web System Integrates Sequence, Structure, Function and Mutation Analysis. PLoS ONE, 2014, 9, e98810.	1.1	6
21	The Geogenomic Mutational Atlas of Pathogens (GoMAP) Web System. PLoS ONE, 2014, 9, e92877.	1.1	2
22	A Structure Based Algorithm for Improving Motifs Prediction. Lecture Notes in Computer Science, 2013, , 242-252.	1.0	0
23	Minimotif Miner 3.0: database expansion and significantly improved reduction of false-positive predictions from consensus sequences. Nucleic Acids Research, 2012, 40, D252-D260.	6.5	52
24	The human phosphotyrosine signaling network: Evolution and hotspots of hijacking in cancer. Genome Research, 2012, 22, 1222-1230.	2.4	72
25	An Open-Source Sandbox for Increasing the Accessibility of Functional Programming to the Bioinformatics and Scientific Communities. , 2012, 2012, 89-94.		5
26	N-terminal Dbl domain of the RhoGEF, Kalirin. Journal of Biomolecular NMR, 2012, 52, 269-276.	1.6	0
27	Reducing False-Positive Prediction of Minimotifs with a Genetic Interaction Filter. PLoS ONE, 2012, 7, e32630.	1.1	3
28	Achieving High Accuracy Prediction of Minimotifs. PLoS ONE, 2012, 7, e45589.	1.1	4
29	Secondary Structure, a Missing Component of Sequence-Based Minimotif Definitions. PLoS ONE, 2012, 7, e49957.	1.1	7
30	HIVToolbox, an Integrated Web Application for Investigating HIV. PLoS ONE, 2011, 6, e20122.	1.1	8
31	Loss-of-Function Mutations of ILDR1 Cause Autosomal-Recessive Hearing Impairment DFNB42. American Journal of Human Genetics, 2011, 88, 127-137.	2.6	108
32	SciReader enables reading of medical content with instantaneous definitions. BMC Medical Informatics and Decision Making, 2011, 11, 4.	1.5	2
33	A computational tool for identifying minimotifs in protein–protein interactions and improving the accuracy of minimotif predictions. Proteins: Structure, Function and Bioinformatics, 2011, 79, 153-164.	1.5	10
34	MimoSA: a system for minimotif annotation. BMC Bioinformatics, 2010, 11, 328.	1.2	6
35	Partitioning of Minimotifs Based on Function with Improved Prediction Accuracy. PLoS ONE, 2010, 5, e12276.	1.1	7
36	Loops Govern SH2 Domain Specificity by Controlling Access to Binding Pockets. Science Signaling, 2010, 3, ra34.	1.6	83

MARTIN R SCHILLER

#	Article	IF	CITATIONS
37	Structural conservation of a short, functional, peptide-sequence motif. Frontiers in Bioscience - Landmark, 2009, Volume, 1143.	3.0	2
38	VENN, a tool for titrating sequence conservation onto protein structures. Nucleic Acids Research, 2009, 37, e124-e124.	6.5	9
39	Minimotif miner 2nd release: a database and web system for motif search. Nucleic Acids Research, 2009, 37, D185-D190.	6.5	64
40	A proposed syntax for Minimotif Semantics, version 1. BMC Genomics, 2009, 10, 360.	1.2	16
41	Autonomous functions for the Sec14p/spectrin-repeat region of Kalirin. Experimental Cell Research, 2008, 314, 2674-2691.	1.2	28
42	Viral infection and human disease - insights from minimotifs. Frontiers in Bioscience - Landmark, 2008, Volume, 6455.	3.0	54
43	RESP18, a homolog of the luminal domain IA-2, is found in dense core vesicles in pancreatic islet cells and is induced by high glucose. Journal of Endocrinology, 2007, 195, 313-321.	1.2	24
44	High-Throughput Phosphotyrosine Profiling Using SH2 Domains. Molecular Cell, 2007, 26, 899-915.	4.5	163
45	Minimotif Miner: A Computational Tool to Investigate Protein Function, Disease, and Genetic Diversity. Current Protocols in Protein Science, 2007, 48, Unit 2.12.	2.8	6
46	Minimotif Miner: a tool for investigating protein function. Nature Methods, 2006, 3, 175-177.	9.0	116
47	Coupling receptor tyrosine kinases to Rho GTPases—GEFs what's the link. Cellular Signalling, 2006, 18, 1834-1843.	1.7	120
48	Regulation of RhoGEF Activity by Intramolecular and Intermolecular SH3 Domain Interactions. Journal of Biological Chemistry, 2006, 281, 18774-18786.	1.6	45
49	High-Performance Exact Algorithms For Motif Search. Journal of Clinical Monitoring and Computing, 2005, 19, 319-328.	0.7	29
50	Critical Role for Kalirin in Nerve Growth Factor Signaling through TrkA. Molecular and Cellular Biology, 2005, 25, 5106-5118.	1.1	45
51	Induction of lamellipodia by Kalirin does not require its guanine nucleotide exchange factor activity. Experimental Cell Research, 2005, 307, 402-417.	1.2	22
52	Rapid Induction of Dendritic Spine Morphogenesis by trans-Synaptic EphrinB-EphB Receptor Activation of the Rho-GEF Kalirin. Neuron, 2003, 37, 263-274.	3.8	418
53	Kalirin Dbl-Homology Guanine Nucleotide Exchange Factor 1 Domain Initiates New Axon Outgrowths via RhoG-Mediated Mechanisms. Journal of Neuroscience, 2002, 22, 6980-6990.	1.7	85
54	Expression of multiple larger-sized transcripts for several genes in oligodendrogliomas: potential markers for glioma subtype. Cancer Letters, 2001, 171, 67-77.	3.2	17

MARTIN R SCHILLER

#	Article	IF	CITATIONS
55	Differential gene expression in a murine model of cancer cachexia. American Journal of Physiology - Endocrinology and Metabolism, 2001, 281, E289-E297.	1.8	24
56	Genes expressed in the mouse pituitary corticotrope AtT-20/D-16v tumor cell line. , 2000, 3, 141-152.		3
57	Induction of Integral Membrane PAM Expression in AtT-20 Cells Alters the Storage and Trafficking of POMC and PC1. Journal of Cell Biology, 1999, 144, 459-471.	2.3	57
58	Molecular Genetic Alterations in Radiation-Induced Astrocytomas. American Journal of Pathology, 1999, 154, 1431-1438.	1.9	101
59	A Novel Neuroendocrine Intracellular Signaling Pathway. Molecular Endocrinology, 1997, 11, 1846-1857.	3.7	18
60	Expression of RESP18 in Peptidergic and Catecholaminergic Neurons. Journal of Histochemistry and Cytochemistry, 1997, 45, 1265-1277.	1.3	14
61	Immobilized Iron(III) Metal Affinity Chromatography for the Separation of Phosphorylated Macromolecules: Ligands and Applications. Journal of Liquid Chromatography and Related Technologies, 1997, 20, 123-142.	0.5	41
62	High-Level Expression of the Prohormones Proenkephalin, Pro-Neuropeptide Y, Proopiomelanocortin, and β-Protachykinin forin VitroProhormone Processing. Protein Expression and Purification, 1997, 10, 80-88.	0.6	15
63	Proenkephalin-processing Enzymes in Chromaffin Granules. Annals of the New York Academy of Sciences, 1996, 780, 121-133.	1.8	7
64	Expression of recombinant pro-neuropeptide Y, proopiomelanocortin, and proenkephalin: relative processing by â€~prohormone thiol protease' (PTP). FEBS Letters, 1996, 382, 6-10.	1.3	9
65	The Processing Proteases Prohormone Thiol Protease, PC1/3 and PC2, and 70-kDa Aspartic Proteinase Show Preferences among Proenkephalin, Proneuropeptide Y, and Proopiomelanocortin Substrates. Archives of Biochemistry and Biophysics, 1996, 328, 107-114.	1.4	33
66	Analysis of wild-type and mutant aspartate aminotransferases using integrated rate equations. BBA - Proteins and Proteomics, 1996, 1297, 17-27.	2.1	4
67	A Neuroendocrine-specific Protein Localized to the Endoplasmic Reticulum by Distal Degradation. Journal of Biological Chemistry, 1995, 270, 26129-26138.	1.6	23
68	Prohormone thiol protease (PTP) processing of recombinant proenkephalin. Biochemistry, 1995, 34, 7988-7995.	1.2	40
69	Characteristics of the Chromaffin Granule Aspartic Proteinase Involved in Proenkephalin Processing. Journal of Neurochemistry, 1995, 65, 1771-1779.	2.1	26