
Michael G Lenné

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981138/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Get Ready for Take-Overs: Using Head-Up Display for Drivers to Engage in Non–Driving-Related Tasks in Automated Vehicles. Human Factors, 2023, 65, 1759-1775.	2.1	3
2	Evaluating Driver Features for Cognitive Distraction Detection and Validation in Manual and Level 2 Automated Driving. Human Factors, 2022, 64, 746-759.	2.1	5
3	Human-Centered Design for an In-Vehicle Truck Driver Fatigue and Distraction Warning System. IEEE Transactions on Intelligent Transportation Systems, 2022, 23, 5350-5359.	4.7	15
4	Beyond gaze fixation: Modeling peripheral vision in relation to speed, Tesla Autopilot, cognitive load, and age in highway driving. Accident Analysis and Prevention, 2022, 171, 106670.	3.0	3
5	Effects of Distraction in On-Road Level 2 Automated Driving: Impacts on Glance Behavior and Takeover Performance. Human Factors, 2021, 63, 1485-1497.	2.1	15
6	All in a day's work: Towards improved understanding of safety leadership during regular safetyâ€related tasks in mining. Human Factors and Ergonomics in Manufacturing, 2021, 31, 157-173.	1.4	0
7	From interfaces to infrastructure: extending ecological interface design to re-design railÂlevel crossings. Cognition, Technology and Work, 2021, 23, 3-21.	1.7	4
8	The Impacts of Temporal Variation and Individual Differences in Driver Cognitive Workload on ECG-Based Detection. Human Factors, 2021, 63, 772-787.	2.1	6
9	First-Stage Evaluation of a Prototype Driver Distraction Human-Machine-Interface Warning System. Journal of Road Safety, 2021, 32, 4-14.	0.2	1
10	On-road driving impairment following sleep deprivation differs according to age. Scientific Reports, 2021, 11, 21561.	1.6	17
11	Drivers Glance Like Lizards during Cell Phone Distraction in Assisted Driving. Proceedings of the Human Factors and Ergonomics Society, 2021, 65, 1410-1414.	0.2	2
12	European NCAP Program Developments to Address Driver Distraction, Drowsiness and Sudden Sickness. Frontiers in Neuroergonomics, 2021, 2, .	0.6	9
13	Spectral Analysis of EEG During Microsleep Events Annotated via Driver Monitoring System to Characterize Drowsiness. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56, 1346-1356.	2.6	23
14	A pre-drive ocular assessment predicts alertness and driving impairment: A naturalistic driving study in shift workers. Accident Analysis and Prevention, 2020, 135, 105386.	3.0	19
15	Measuring Drivers' Physiological Response to Different Vehicle Controllers in Highly Automated Driving (HAD): Opportunities for Establishing Real-Time Values of Driver Discomfort. Information (Switzerland), 2020, 11, 390.	1.7	8
16	Interaction-centred design: an end user evaluation of road intersection concepts developed using the cognitive work analysis design toolkit (CWA-DT). Ergonomics, 2020, 63, 1221-1239.	1.1	7
17	Driver trust & mode confusion in an on-road study of level-2 automated vehicle technology. Safety Science, 2020, 130, 104845.	2.6	36
18	Effects of different non-driving-related-task display modes on drivers' eye-movement patterns during take-over in an automated vehicle. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, 70, 135-148.	1.8	44

MICHAEL G LENNé

#	Article	IF	CITATIONS
19	Individual Differences in Glance Patterns under Distraction in Level 2 Automated Driving. Proceedings of the Human Factors and Ergonomics Society, 2020, 64, 1981-1985.	0.2	3
20	Evaluating rider steering responses to an unexpected collision hazard using a motorcycle riding simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 66, 292-309.	1.8	9
21	Engaging in NDRTs affects drivers' responses and glance patterns after silent automation failures. Transportation Research Part F: Traffic Psychology and Behaviour, 2019, 62, 870-882.	1.8	48
22	Patterns of Sequential Off-Road Glances Indicate Levels of Distraction in Automated Driving. Proceedings of the Human Factors and Ergonomics Society, 2019, 63, 2056-2060.	0.2	7
23	Continuous monitoring of visual distraction and drowsiness in shift-workers during naturalistic driving. Safety Science, 2019, 119, 112-116.	2.6	22
24	Challenging conventional rural rail level crossing design: Evaluating three new systems thinking-based designs in a driving simulator. Safety Science, 2018, 110, 100-114.	2.6	15
25	Distributed improvisation: a systems perspective of improvisation â€~epics' by led outdoor activity leaders. Ergonomics, 2018, 61, 295-312.	1.1	9
26	Ending on a positive: Examining the role of safety leadership decisions, behaviours and actions in a safety critical situation. Applied Ergonomics, 2018, 66, 139-150.	1.7	13
27	Analysis of Gaze Behavior to Measure Cognitive Distraction in Real-World Driving. Proceedings of the Human Factors and Ergonomics Society, 2018, 62, 1944-1948.	0.2	10
28	A sociotechnical design toolkit for bridging the gap between systemsâ€based analyses and system design. Human Factors and Ergonomics in Manufacturing, 2018, 28, 327-341.	1.4	25
29	Safety leadership and systems thinking: application and evaluation of a Risk Management Framework in the mining industry. Ergonomics, 2017, 60, 1336-1350.	1.1	22
30	To stop or not to stop: Contrasting compliant and non-compliant driver behaviour at rural rail level crossings. Accident Analysis and Prevention, 2017, 108, 209-219.	3.0	23
31	The relative importance of real-time in-cab and external feedback in managing fatigue in real-world commercial transport operations. Traffic Injury Prevention, 2017, 18, S71-S78.	0.6	33
32	Using the decision ladder to understand road user decision making at actively controlled rail level crossings. Applied Ergonomics, 2016, 56, 1-10.	1.7	23
33	Development of a low-cost motorcycle riding simulator for emergency scenarios involving swerving. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2016, 230, 1891-1903.	1.1	9
34	Walking the line: Understanding pedestrian behaviour and risk at rail level crossings with cognitive work analysis. Applied Ergonomics, 2016, 53, 209-227.	1.7	36
35	When paradigms collide at the road rail interface: evaluation of a sociotechnical systems theory design toolkit for cognitive work analysis. Ergonomics, 2016, 59, 1135-1157.	1.1	13
36	Variability in decision-making and critical cue use by different road users at rail level crossings. Ergonomics, 2016, 59, 754-766.	1.1	10

Michael G Lenné

#	Article	IF	CITATIONS
37	More than meets the eye: Using cognitive work analysis to identify design requirements for future rail level crossing systems. Applied Ergonomics, 2016, 53, 312-322.	1.7	50
38	Where do novice and experienced drivers direct their attention on approach to urban rail level crossings?. Accident Analysis and Prevention, 2015, 77, 1-11.	3.0	30
39	Cognitive work analysis and design: current practice and future practitioner requirements. Theoretical Issues in Ergonomics Science, 2015, 16, 154-173.	1.0	17
40	Designing a ticket to ride with the Cognitive Work Analysis Design Toolkit. Ergonomics, 2015, 58, 1266-1286.	1.1	32
41	Designing sociotechnical systems with cognitive work analysis: putting theory back into practice. Ergonomics, 2015, 58, 822-851.	1.1	70
42	Safety-related improvisation in led outdoor activities: An exploratory investigation into its occurrence and influencing factors. Journal of Outdoor and Environmental Education, 2014, 17, 16-29.	0.7	2
43	Using the Event Analysis of Systemic Teamwork (EAST) to explore conflicts between different road user groups when making right hand turns at urban intersections. Ergonomics, 2014, 57, 1628-1642.	1.1	37
44	Exploring schema-driven differences in situation awareness between road users: an on-road study of driver, cyclist and motorcyclist situation awareness. Ergonomics, 2014, 57, 191-209.	1.1	76
45	Impromaps: Applying Rasmussen's Risk Management Framework to improvisation incidents. Safety Science, 2014, 64, 60-70.	2.6	51
46	Injury causation in the great outdoors: A systems analysis of led outdoor activity injury incidents. Accident Analysis and Prevention, 2014, 63, 111-120.	3.0	68
47	Systems thinking applied to safety during manual handling tasks in the transport and storage industry. Accident Analysis and Prevention, 2014, 68, 181-191.	3.0	47
48	Driver inattention and driver distraction in serious casualty crashes: Data from the Australian National Crash In-depth Study. Accident Analysis and Prevention, 2013, 54, 99-107.	3.0	200
49	Objective and subjective measures of sleepiness, and their associations with onâ€road driving events in shift workers. Journal of Sleep Research, 2013, 22, 58-69.	1.7	106
50	The crash at Kerang: Investigating systemic and psychological factors leading to unintentional non-compliance at rail level crossings. Accident Analysis and Prevention, 2013, 50, 1278-1288.	3.0	128
51	Improvisation: theory, measures and known influencing factors. Theoretical Issues in Ergonomics Science, 2013, 14, 475-498.	1.0	28
52	From work analysis to work design: A review of cognitive work analysis design applications. Proceedings of the Human Factors and Ergonomics Society, 2012, 56, 368-372.	0.2	22
53	A systems approach to accident causation in mining: An application of the HFACS method. Accident Analysis and Prevention, 2012, 48, 111-117.	3.0	168
54	Effectiveness of traffic light vs. boom barrier controls at road–rail level crossings: A simulator study. Accident Analysis and Prevention, 2012, 45, 187-194.	3.0	38

Michael G Lenné

#	Article	IF	CITATIONS
55	Driver behaviour at rail level crossings: Responses to flashing lights, traffic signals and stop signs in simulated rural driving. Applied Ergonomics, 2011, 42, 548-554.	1.7	84
56	Effects on driving performance of interacting with an in-vehicle music player: A comparison of three interface layout concepts for information presentation. Applied Ergonomics, 2011, 42, 583-591.	1.7	41
57	Driver engagement in distracting activities and the strategies used to minimise risk. Safety Science, 2010, 48, 326-332.	2.6	160
58	Integrating Human Factors Methods and Systems Thinking for Transport Analysis and Design. , 0, , .		11