Harilaos N Psaraftis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7981044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Dynamic Programming Solution to the Single Vehicle Many-to-Many Immediate Request Dial-a-Ride Problem. Transportation Science, 1980, 14, 130-154.	4.4	469
2	Dynamic vehicle routing: Status and prospects. Annals of Operations Research, 1995, 61, 143-164.	4.1	389
3	A heuristic algorithm for the multi-vehicle advance request dial-a-ride problem with time windows. Transportation Research Part B: Methodological, 1986, 20, 243-257.	5.9	384
4	Speed models for energy-efficient maritime transportation: A taxonomy and survey. Transportation Research Part C: Emerging Technologies, 2013, 26, 331-351.	7.6	374
5	Dynamic vehicle routing problems: Three decades and counting. Networks, 2016, 67, 3-31.	2.7	310
6	Cyclic Transfer Algorithm for Multivehicle Routing and Scheduling Problems. Operations Research, 1993, 41, 935-946.	1.9	237
7	An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride Problem with Time Windows. Transportation Science, 1983, 17, 351-357.	4.4	230
8	Maritime routing and speed optimization with emission control areas. Transportation Research Part C: Emerging Technologies, 2015, 52, 57-73.	7.6	218
9	Balancing the economic and environmental performance of maritime transportation. Transportation Research, Part D: Transport and Environment, 2010, 15, 458-462.	6.8	214
10	Ship speed optimization: Concepts, models and combined speed-routing scenarios. Transportation Research Part C: Emerging Technologies, 2014, 44, 52-69.	7.6	206
11	A Dynamic Programming Approach for Sequencing Groups of Identical Jobs. Operations Research, 1980, 28, 1347-1359.	1.9	175
12	CO2 emission statistics for the world commercial fleet. WMU Journal of Maritime Affairs, 2009, 8, 1-25.	2.7	155
13	A high-level synthesis of oil spill response equipment and countermeasures. Journal of Hazardous Materials, 2004, 107, 51-58.	12.4	151
14	The role of operational research in green freight transportation. European Journal of Operational Research, 2019, 274, 807-823.	5.7	121
15	Reduction of emissions along the maritime intermodal container chain: operational models and policies. Maritime Policy and Management, 2011, 38, 451-469.	3.8	113
16	Market-based measures for greenhouse gas emissions from ships: a review. WMU Journal of Maritime Affairs, 2012, 11, 211-232.	2.7	109
17	On two speed optimization problems for ships that sail in and out of emission control areas. Transportation Research, Part D: Transport and Environment, 2015, 39, 56-64.	6.8	108
18	A multiple ship routing and speed optimization problem under time, cost and environmental objectives. Transportation Research, Part D: Transport and Environment, 2017, 52, 303-321.	6.8	100

#	Article	IF	CITATIONS
19	An empirical analysis of IOPCF oil spill cost data. Marine Pollution Bulletin, 2010, 60, 1455-1466.	5.0	94
20	Dynamic Shortest Paths in Acyclic Networks with Markovian Arc Costs. Operations Research, 1993, 41, 91-101.	1.9	89
21	Ship weather routing: A taxonomy and survey. Ocean Engineering, 2020, 213, 107697.	4.3	82
22	Routing and Scheduling on a Shoreline with Release Times. Management Science, 1990, 36, 212-223.	4.1	76
23	k-Interchange procedures for local search in a precedence-constrained routing problem. European Journal of Operational Research, 1983, 13, 391-402.	5.7	74
24	Analysis of an O(N2) heuristic for the single vehicle many-to-many Euclidean dial-a-ride problem. Transportation Research Part B: Methodological, 1983, 17, 133-145.	5.9	73
25	Maritime shipping and emissions: A three-layered, damage-based approach. Ocean Engineering, 2015, 110, 94-101.	4.3	69
26	A Literature Survey on Market-Based Measures for the Decarbonization of Shipping. Sustainability, 2020, 12, 3953.	3.2	66
27	The implications of the new sulphur limits on the European Ro-Ro sector. Transportation Research, Part D: Transport and Environment, 2017, 52, 185-201.	6.8	64
28	Optimal Response to Oil Spills: The Strategic Decision Case. Operations Research, 1986, 34, 203-217.	1.9	62
29	The possible designation of the Mediterranean Sea as a SECA: A case study. Transportation Research, Part D: Transport and Environment, 2014, 28, 74-90.	6.8	61
30	Decarbonization of maritime transport: to be or not to be?. Maritime Economics and Logistics, 2019, 21, 353-371.	4.0	58
31	Paradox of international maritime organization's carbon intensity indicator. Communications in Transportation Research, 2021, 1, 100005.	10.7	57
32	Formal Safety Assessment: an updated review. Journal of Marine Science and Technology, 2012, 17, 390-402.	2.9	54
33	Data analytics for fuel consumption management in maritime transportation: Status and perspectives. Transportation Research, Part E: Logistics and Transportation Review, 2021, 155, 102489.	7.4	51
34	Payback Period for Emissions Abatement Alternatives: Role of Regulation and Fuel Prices. Transportation Research Record, 2016, 2549, 37-44.	1.9	50
35	Speed Optimization vs Speed Reduction: the Choice between Speed Limits and a Bunker Levy. Sustainability, 2019, 11, 2249.	3.2	50
36	Operational measures to mitigate and reverse the potential modal shifts due to environmental legislation. Maritime Policy and Management, 2019, 46, 117-132.	3.8	46

#	Article	IF	CITATIONS
37	Green Maritime Logistics: The Quest for Win-win Solutions. Transportation Research Procedia, 2016, 14, 133-142.	1.5	43
38	Decarbonization of Maritime Transport: Is There Light at the End of the Tunnel?. Sustainability, 2021, 13, 237.	3.2	41
39	A Tactical Decision Algorithm for the Optimal Dispatching of Oil Spill Cleanup Equipment. Management Science, 1985, 31, 1475-1491.	4.1	37
40	Bi-level optimization model applications in managing air emissions from ships: A review. Communications in Transportation Research, 2021, 1, 100020.	10.7	36
41	The economic speed of an oceangoing vessel in a dynamic setting. Transportation Research Part B: Methodological, 2015, 76, 48-67.	5.9	32
42	A comparative evaluation of market based measures for shipping decarbonization. Maritime Transport Research, 2021, 2, 100019.	3.2	32
43	Implications of the EU's Inclusion of Maritime Transport in the Emissions Trading System for Shipping Companies. Engineering, 2021, 7, 554-557.	6.7	32
44	Spill accident modeling: a critical survey of the event-decision network in the context of IMO's formal safety assessment. Journal of Hazardous Materials, 2004, 107, 59-66.	12.4	29
45	EU Ports Policy: Where do we Go from Here?. Maritime Economics and Logistics, 2005, 7, 73-82.	4.0	28
46	Green Transportation Logistics. Profiles in Operations Research, 2016, , .	0.4	27
47	Reduced environmental impact of marine transport through speed reduction and wind assisted propulsion. Transportation Research, Part D: Transport and Environment, 2020, 83, 102380.	6.8	27
48	Concession of the Piraeus container terminal: turbulent times and the quest for competitiveness. Maritime Policy and Management, 2012, 39, 27-43.	3.8	26
49	Monitoring the Carbon Footprint of Dry Bulk Shipping in the EU: An Early Assessment of the MRV Regulation. Sustainability, 2019, 11, 5133.	3.2	26
50	Speed optimization versus speed reduction: Are speed limits better than a bunker levy?. Maritime Economics and Logistics, 2019, 21, 524-542.	4.0	25
51	Influence and transparency at the IMO: the name of the game. Maritime Economics and Logistics, 2020, 22, 151-172.	4.0	25
52	Maritime safety: To be or not to be proactive. WMU Journal of Maritime Affairs, 2002, 1, 3-16.	2.7	24
53	Decarbonizing maritime transport: A Ro-Pax case study. Research in Transportation Business and Management, 2020, 37, 100565.	2.9	24
54	Transport service selection and routing with carbon emissions and inventory costs consideration in the context of the Belt and Road Initiative. Transportation Research, Part E: Logistics and Transportation Review, 2022, 159, 102630.	7.4	24

#	Article	IF	CITATIONS
55	A Simple Synchro – Modal Decision Support Tool for the Piraeus Container Terminal. Transportation Research Procedia, 2016, 14, 2860-2869.	1.5	23

The Need to Amend IMO's EEDI to Include a Threshold for Performance in Waves (Realistic Sea) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

57	The profit maximizing liner shipping problem with flexible frequencies: logistical and environmental considerations. Flexible Services and Manufacturing Journal, 2019, 31, 567-597.	3.4	23
58	Optimizing shipping company operations using business process modelling. Maritime Policy and Management, 2005, 32, 403-420.	3.8	22
59	Liner shipping cycle cost modelling, fleet deployment optimization and what-if analysis. Maritime Economics and Logistics, 2011, 13, 278-297.	4.0	22
60	Policy measures to avert possible modal shifts caused by sulphur regulation in the European Ro-Ro sector. Transportation Research, Part D: Transport and Environment, 2019, 70, 1-17.	6.8	22
61	A multi-commodity, capacitated pickup and delivery problem: The single and two-vehicle cases. European Journal of Operational Research, 2011, 215, 572-580.	5.7	21
62	Impacts of a bunker levy on decarbonizing shipping: A tanker case study. Transportation Research, Part D: Transport and Environment, 2022, 106, 103257.	6.8	21
63	Scheduling Large-Scale Advance-Request Dial-A-Ride Systems. American Journal of Mathematical and Management Sciences, 1986, 6, 327-367.	0.9	20
64	Green Corridors in European Surface Freight Logistics and the SuperGreen Project. Procedia, Social and Behavioral Sciences, 2012, 48, 1723-1732.	0.5	19
65	Shipping decarbonization in the aftermath of MEPC 76. Cleaner Logistics and Supply Chain, 2021, 1, 100008.	6.0	19
66	Implications of the EU Emissions Trading System (ETS) on European container routes: A carbon leakage case study. Maritime Transport Research, 2022, 3, 100059.	3.2	17
67	Ship routing and scheduling: the cart before the horse conjecture. Maritime Economics and Logistics, 2019, 21, 111-124.	4.0	16
68	Environmental risk evaluation criteria. WMU Journal of Maritime Affairs, 2008, 7, 409-427.	2.7	15
69	The enforcement of the global sulfur cap in maritime transport. Maritime Business Review, 2019, 4, 199-216.	1.8	14
70	The LNG Market: A Game Theoretic Approach to Competition in LNG Shipping. Maritime Economics and Logistics, 2009, 11, 227-246.	4.0	13
71	Container transportation as an interdependent security problem. Journal of Transportation Security, 2010, 3, 197-211.	1.4	13
72	The link between economy and environment in the post-crisis era: lessons learned from slow steaming. International Journal of Decision Sciences, Risk and Management, 2011, 3, 311.	0.1	13

#	Article	IF	CITATIONS
73	On the practical importance of asymptotic optimality in certain heuristic algorithms. Networks, 1984, 14, 587-596.	2.7	12
74	Tariff Reform in the Port of Piraeus: a Practical Approach. Maritime Economics and Logistics, 2005, 7, 356-381.	4.0	12
75	Three potential benefits of the EU and IMO's landmark efforts to monitor carbon dioxide emissions from shipping. Frontiers of Engineering Management, 2021, 8, 310-311.	6.1	12
76	The impact of the 2020 global sulfur cap on maritime CO ₂ emissions. Maritime Business Review, 2021, 6, 339-357.	1.8	12
77	Green Maritime Transportation: Speed and Route Optimization. Profiles in Operations Research, 2016, , 299-349.	0.4	12
78	Slow Steaming in Maritime Transportation: Fundamentals, Trade-offs, and Decision Models. Profiles in Operations Research, 2015, , 315-358.	0.4	11
79	Foreword to the Focused Issue on Maritime Transportation. Transportation Science, 1999, 33, 1-2.	4.4	10
80	Green Maritime Transportation: Market Based Measures. Profiles in Operations Research, 2016, , 267-297.	0.4	10
81	Transportation Emissions: Some Basics. Profiles in Operations Research, 2016, , 41-79.	0.4	9
82	Impact assessment of a mandatory operational goal-based short-term measure to reduce GHG emissions from ships: the LDC/SIDS case study. International Environmental Agreements: Politics, Law and Economics, 2021, 21, 445-467.	2.9	7
83	Reducing GHGs: The MBM and MRV Agendas. , 2019, , 375-405.		6
84	Impacts of short-term measures to decarbonize maritime transport on perishable cargoes. Maritime Economics and Logistics, 2022, 24, 602-629.	4.0	6
85	New models on the ocean acoustic detection process. Journal of the Acoustical Society of America, 1981, 69, 1724-1734.	1.1	5
86	AEGIS: Advanced, efficient and green intermodal systems. IOP Conference Series: Materials Science and Engineering, 2020, 929, 012030.	0.6	5
87	Key performance indicators to assess and reverse the negative impacts of SECAs policies for Ro-Ro shipping. FME Transactions, 2018, 46, 347-354.	1.4	5
88	The Future of Maritime Transport. , 2021, , 535-539.		4
89	CLIMATE CHANGE POLICY IN SHIPPING FOCUSING ON EMISSION STANDARDS AND TECHNOLOGY MEASURES. Environmental Engineering and Management Journal, 2011, 10, 1589-1596.	0.6	4
90	A basic problem of resource allocation in target tracking. Journal of the Acoustical Society of America, 1982, 72, 824-833.	1.1	3

#	Article	IF	CITATIONS
91	Discreteâ€time detection modeling for unsaturated ocean acoustic propagation. Journal of the Acoustical Society of America, 1983, 74, 1630-1633.	1.1	3
92	FIRST EXPERIENCES WITH THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY OIL SPILL MODEL. International Oil Spill Conference Proceedings, 1983, 1983, 301-305.	0.1	3
93	A sequential hypothesis testing, optimal stopping problem in underwater acoustic detection. Journal of the Acoustical Society of America, 1984, 75, 859-865.	1.1	2
94	Introduction to an innovative crew composition approach based on safety/operational and financial requirements. WMU Journal of Maritime Affairs, 2005, 4, 33-55.	2.7	2
95	Speed Optimization for Sustainable Shipping. , 2019, , 339-374.		2
96	SHIP EMISSIONS, COSTS AND THEIR TRADEOFFS. , 2011, , 257-295.		2
97	Analysis of the Greek Coastal Shipping Companies with a Multi-Criteria Evaluation Model. , 2006, , 407-436.		1
98	International Symposium on Maritime Safety, Security and Environmental Protection. WMU Journal of Maritime Affairs, 2008, 7, 1-3.	2.7	1
99	The role of Mediterranean short sea shipping in the EU transport chain: The case of Greece. WMU Journal of Maritime Affairs, 2008, 7, 17-30.	2.7	1
100	A web-based open emissions calculator. International Journal of Ocean Systems Management, 2009, 1, 188.	0.1	1
101	Energy Efficiency of Ships. , 2021, , 294-298.		1
102	Green Corridors in European Surface Freight Logistics. Profiles in Operations Research, 2013, , 193-218.	0.4	1
103	THE LEGAL ENVIRONMENT COMPONENT OF AN OIL SPILL CLEANUP MODEL. International Oil Spill Conference Proceedings, 1981, 1981, 695-700.	0.1	1
104	Green Corridors and Their Possible Impact on the European Supply Chain. Profiles in Operations Research, 2015, , 521-550.	0.4	1
105	PUTTING AN OIL SPILL CLEANUP COMPUTER MODEL TO WORK FOR THE NAVY. Naval Engineers Journal, 1983, 95, 165-172.	0.1	0
106	Bibliographic Section. Transportation Science, 1987, 21, 126-129.	4.4	0
107	A synthesis algorithm for an oil spill problem of complementary locations on networks. Applied Mathematical Modelling, 2001, 25, 269-285.	4.2	0
108	Comments on: Static pickup and delivery problems: aÂclassification scheme and survey. Top, 2007, 15, 41-42.	1.6	0

#	Article	IF	CITATIONS
109	Letter to the Editor. Marine Pollution Bulletin, 2011, 62, 878-879.	5.0	0
110	Call for Papers —Focused Issue of <i>Transportation Science</i> on Maritime Transportation and Port Logistics. Transportation Science, 2013, 47, 128-128.	4.4	0
111	Guest Editorial: Special Issue on Maritime Transportation and Port Logistics. Transportation Science, 2015, 49, 868-869.	4.4	0
112	Reducing Sulfur Emissions: Logistical and Environmental Considerations. , 2019, , 249-284.		0
113	The effects of regulatory changes on green freight corridors. , 2011, , 807-814.		0
114	Maritime Transportation. , 0, , 669-674.		0
115	STRATEGIC PLANNING FOR LARGE AND SMALL OIL SPILLS IN NEW ENGLAND. International Oil Spill Conference Proceedings, 1985, 1985, 645-645.	0.1	0