Chong-Yong Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980606/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wiring of Photosystem II to Hydrogenase for Photoelectrochemical Water Splitting. Journal of the American Chemical Society, 2015, 137, 8541-8549.	13.7	228
2	Graphene-supported [{Ru4O4(OH)2(H2O)4}(γ-SiW10O36)2]10â^' for highly efficient electrocatalytic water oxidation. Energy and Environmental Science, 2013, 6, 2654.	30.8	124
3	A high-performance capillary-fed electrolysis cell promises more cost-competitive renewable hydrogen. Nature Communications, 2022, 13, 1304.	12.8	111
4	Solar water splitting: preserving the beneficial small feature size in porous α-Fe ₂ O ₃ photoelectrodes during annealing. Journal of Materials Chemistry A, 2013, 1, 212-215.	10.3	100
5	Photoelectrochemical H ₂ Evolution with a Hydrogenase Immobilized on a TiO ₂ â€Protected Silicon Electrode. Angewandte Chemie - International Edition, 2016, 55, 5971-5974.	13.8	98
6	3D Printing for Electrocatalytic Applications. Joule, 2019, 3, 1835-1849.	24.0	80
7	Photoelectrochemical reduction of aqueous protons with a CuO CuBi ₂ O ₄ heterojunction under visible light irradiation. Physical Chemistry Chemical Physics, 2014, 16, 22462-22465.	2.8	78
8	3Dâ€Printed Conical Arrays of TiO ₂ Electrodes for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials, 2017, 7, 1701060.	19.5	75
9	Anodic Formation of Selfâ€Organized Cobalt Oxide Nanoporous Layers. Angewandte Chemie - International Edition, 2013, 52, 2077-2081.	13.8	71
10	Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). Chemical Communications, 2012, 48, 8685.	4.1	67
11	Anodic Nanotubular/porous Hematite Photoanode for Solar Water Splitting: Substantial Effect of Iron Substrate Purity. ChemSusChem, 2014, 7, 934-940.	6.8	64
12	Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation. Advanced Healthcare Materials, 2019, 8, e1900425.	7.6	62
13	Electrochemical-assisted photodegradation of mixed dye and textile effluents using TiO2 thin films. Journal of Hazardous Materials, 2007, 146, 73-80.	12.4	59
14	Influence of annealing temperature on photoelectrochemical water splitting of α-Fe2O3 films prepared by anodic deposition. Electrochimica Acta, 2013, 91, 307-313.	5.2	55
15	Ti and Sn co-doped anodic α-Fe2O3 films for efficient water splitting. Electrochemistry Communications, 2013, 30, 21-25.	4.7	51
16	Enhancing the Water Splitting Efficiency of Snâ€Đoped Hematite Nanoflakes by Flame Annealing. Chemistry - A European Journal, 2014, 20, 77-82.	3.3	51
17	The formation of gold nanoparticles using hydroquinone as a reducing agent through a localized pH change upon addition of NaOH to a solution of HAuCl4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 370, 35-41.	4.7	50
18	Thermal air oxidation of Fe: rapid hematite nanowire growth and photoelectrochemical water splitting performance. Electrochemistry Communications, 2012, 23, 59-62.	4.7	50

CHONG-YONG LEE

#	Article	IF	CITATIONS
19	Rapid formation of self-organised Ag nanosheets with high efficiency and selectivity in CO ₂ electroreduction to CO. Sustainable Energy and Fuels, 2017, 1, 1023-1027.	4.9	49
20	Si-doped Fe2O3 nanotubular/nanoporous layers for enhanced photoelectrochemical water splitting. Electrochemistry Communications, 2013, 34, 308-311.	4.7	46
21	Electrochemical-assisted photodegradation of dye on TiO2 thin films: investigation on the effect of operational parameters. Journal of Hazardous Materials, 2005, 118, 197-203.	12.4	38
22	Strongly enhanced photocurrent response for Na doped Ta3N5-nano porous structure. Electrochemistry Communications, 2012, 17, 67-70.	4.7	38
23	Evaluation of Levels of Defect Sites Present in Highly Ordered Pyrolytic Graphite Electrodes Using Capacitive and Faradaic Current Components Derived Simultaneously from Large-Amplitude Fourier Transformed ac Voltammetric Experiments. Analytical Chemistry, 2009, 81, 584-594.	6.5	37
24	Emerging approach in semiconductor photocatalysis: Towards 3D architectures for efficient solar fuels generation in semi-artificial photosynthetic systems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 39, 142-160.	11.6	34
25	Detailed Electrochemical Studies of the Tetraruthenium Polyoxometalate Water Oxidation Catalyst in Acidic Media: Identification of an Extended Oxidation Series using Fourier Transformed Alternating Current Voltammetry. Inorganic Chemistry, 2012, 51, 11521-11532.	4.0	33
26	Revelation of Multiple Underlying RuO ₂ Redox Processes Associated with Pseudocapacitance and Electrocatalysis. Langmuir, 2010, 26, 16155-16162.	3.5	32
27	High-power pulsed plasma deposition of hematite photoanode for PEC water splitting. Catalysis Today, 2014, 230, 8-14.	4.4	32
28	Reversible and Selective Interconversion of Hydrogen and Carbon Dioxide into Formate by a Semiartificial Formate Hydrogenlyase Mimic. Journal of the American Chemical Society, 2019, 141, 17498-17502.	13.7	32
29	Effect of supporting electrolytes in electrochemically-assisted photodegradation of an azo dye. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 172, 316-321.	3.9	31
30	Identification of Surface Heterogeneity Effects in Cyclic Voltammograms Derived from Analysis of an Individually Addressable Gold Array Electrode. Analytical Chemistry, 2008, 80, 3873-3881.	6.5	28
31	Boosting Formate Production from CO ₂ at High Current Densities Over a Wide Electrochemical Potential Window on a SnS Catalyst. Advanced Science, 2021, 8, e2004521.	11.2	27
32	Mediator Enhanced Water Oxidation Using Rb ₄ [Ru ^{II} (bpy) ₃] ₅ [{Ru ^{III} ₄ O _{ Film Modified Electrodes. Inorganic Chemistry, 2014, 53, 7561-7570.}	4(C)H)zasub>2
33	Photoelectrochemical H ₂ Evolution with a Hydrogenase Immobilized on a TiO ₂ â€Protected Silicon Electrode. Angewandte Chemie, 2016, 128, 6075-6078.	2.0	26
34	Effect of heterogeneity on the dc and ac voltammetry of the [Fe(CN)6]3â^'/4â^' solution-phase process at a highly ordered pyrolytic graphite electrode. Journal of Electroanalytical Chemistry, 2008, 615, 1-11.	3.8	23
35	Theoretical Analysis of the Two-Electron Transfer Reaction and Experimental Studies with Surface-Confined Cytochrome <i>c</i> Peroxidase Using Large-Amplitude Fourier Transformed AC Voltammetry. Langmuir, 2012, 28, 9864-9877.	3.5	22
36	Properties and Photoelectrocatalytic Behaviour of Sol-Gel Derived TiO2 Thin Films. Journal of Sol-Gel Science and Technology, 2006, 37, 19-25.	2.4	21

CHONG-YONG LEE

#	Article	IF	CITATIONS
37	Self-organized cobalt fluoride nanochannel layers used as a pseudocapacitor material. Chemical Communications, 2014, 50, 7067-7070.	4.1	21
38	A Comparison of the Higher Order Harmonic Components Derived from Large-Amplitude Fourier Transformed ac Voltammetry of Myoglobin and Heme in DDAB Films at a Pyrolytic Graphite Electrode. Langmuir, 2010, 26, 5243-5253.	3.5	20
39	A 3Dâ€Printed Electrochemical Water Splitting Cell. Advanced Materials Technologies, 2019, 4, 1900433.	5.8	20
40	Effects of Coupled Homogeneous Chemical Reactions on the Response of Large-Amplitude AC Voltammetry: Extraction of Kinetic and Mechanistic Information by Fourier Transform Analysis of Higher Harmonic Data. Journal of Physical Chemistry A, 2010, 114, 10122-10134.	2.5	19
41	A Decaheme Cytochrome as a Molecular Electron Conduit in Dye‧ensitized Photoanodes. Advanced Functional Materials, 2015, 25, 2308-2315.	14.9	18
42	Tunable solution-processable anodic exfoliated graphene. Applied Materials Today, 2019, 15, 290-296.	4.3	18
43	A robust 3D printed multilayer conductive graphene/polycaprolactone composite electrode. Materials Chemistry Frontiers, 2020, 4, 1664-1670.	5.9	18
44	Anodic self-organized transparent nanotubular/porous hematite films from Fe thin-films sputtered on FTO and photoelectrochemical water splitting. Research on Chemical Intermediates, 2015, 41, 9333-9341.	2.7	17
45	Theoretical and experimental investigation of surface-confined two-center metalloproteins by large-amplitude Fourier transformed ac voltammetry. Journal of Electroanalytical Chemistry, 2011, 656, 293-303.	3.8	16
46	A significant cathodic shift in the onset potential of photoelectrochemical water splitting for hematite nanostructures grown from Fe–Si alloys. Materials Horizons, 2014, 1, 344-347.	12.2	15
47	A decahaem cytochrome as an electron conduit in protein–enzyme redox processes. Chemical Communications, 2016, 52, 7390-7393.	4.1	15
48	CO ₂ electrolysis in seawater: calcification effect and a hybrid self-powered concept. Journal of Materials Chemistry A, 2018, 6, 23301-23307.	10.3	15
49	Facile electrochemical synthesis of ultrathin iron oxyhydroxide nanosheets for the oxygen evolution reaction. Chemical Communications, 2019, 55, 8808-8811.	4.1	15
50	Hierarchical architectures of mesoporous Pd on highly ordered TiO ₂ nanotube arrays for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 8041-8048.	10.3	15
51	Cathodic exfoliation of graphite into graphene nanoplatelets in aqueous solution of alkali metal salts. Journal of Materials Science, 2021, 56, 3612-3622.	3.7	15
52	Leveraging e-Science infrastructure for electrochemical research. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 3336-3352.	3.4	14
53	Estimation of electrode kinetic and uncompensated resistance parameters and insights into their significance using Fourier transformed ac voltammetry and e-science software tools. Journal of Electroanalytical Chemistry, 2013, 690, 104-110.	3.8	14
54	Systematic evaluation of electrode kinetics and impact of surface heterogeneity for surface-confined proteins using analysis of harmonic components available in sinusoidal large-amplitude Fourier transformed ac voltammetry. Analytica Chimica Acta, 2009, 652, 205-214.	5.4	13

CHONG-YONG LEE

#	Article	IF	CITATIONS
55	N-Doped lepidocrocite nanotubular arrays: hydrothermal formation from anodic TiO2nanotubes and enhanced visible light photoresponse. Journal of Materials Chemistry A, 2013, 1, 1860-1866.	10.3	13
56	Improved photoelectrochemical water splitting of hematite nanorods thermally grown on Fe–Ti alloys. Electrochemistry Communications, 2014, 44, 49-53.	4.7	13
57	Comparison of the electrochemical behaviour of buckypaper and polymer-intercalated buckypaper electrodes. Journal of Electroanalytical Chemistry, 2011, 652, 52-59.	3.8	12
58	A Selfâ€Assembled CO ₂ Reduction Electrocatalyst: Posyâ€Bouquetâ€Shaped Goldâ€Polyaniline Coreâ€Shell Nanocomposite. ChemSusChem, 2020, 13, 5023-5030.	6.8	10
59	A Non-Noble Metal Catalyst-Based Electrolyzer for Efficient CO ₂ -to-Formate Conversion. ACS Sustainable Chemistry and Engineering, 2021, 9, 16394-16402.	6.7	9
60	Probing Second Harmonic Components of pHâ€Sensitive Redox Processes in a Mesoporous TiO ₂ â€Nafion Film Electrode with Fourierâ€Transformed Largeâ€Amplitude Sinusoidally Modulated Voltammetry. Electroanalysis, 2009, 21, 41-47.	2.9	7
61	Energy materials for transient power sources. MRS Bulletin, 2020, 45, 121-128.	3.5	7
62	Attributes of Largeâ€Amplitude Fourier Transformed Alternating Current Voltammetry at Array and Single Carbon Fiber Microdisk Electrodes. Electroanalysis, 2013, 25, 931-944.	2.9	5
63	Simultaneous Anodic and Cathodic Exfoliation of Graphite Electrodes in an Aqueous Solution of Inorganic Salt. ChemElectroChem, 2021, 8, 3168-3173.	3.4	5
64	Electrochemical Parameter Optimization Using Scientific Workflows. , 2010, , .		4
65	Electrochemical Oxidation of W(CO)4(LL): Generation, Characterization, and Reactivity of [W(CO)4(LL)]+ (LL=α-diimine ligands). Australian Journal of Chemistry, 2017, 70, 1006.	0.9	2
66	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	3.2	2
67	Neural Tissue Engineering: Human Neural Tissues from Neural Stem Cells Using Conductive Biogel and Printed Polymer Microelectrode Arrays for 3D Electrical Stimulation (Adv. Healthcare Mater. 15/2019). Advanced Healthcare Materials, 2019, 8, 1970062.	7.6	1
68	Superior electrochemical platforms based on polymer carbon nanotube composite electrodes. , 2010, ,		0
69	3D Printing: 3Dâ€Printed Conical Arrays of TiO ₂ Electrodes for Enhanced Photoelectrochemical Water Splitting (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7,	19.5	0
70	Beyond artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 422-438.	3.2	0
71	Biological approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 66-83.	3.2	0
72	Silicon Nanowires for Innovative Energy Applications. ECS Meeting Abstracts, 2012, , .	0.0	0

#	Article	IF	CITATIONS
73	Earth-abundant electrocatalysts for sustainable energy conversion. , 2022, , 131-168.		0