Mirjam Helfrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980521/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Geogenic organic carbon in terrestrial sediments and its contribution to total soil carbon. Soil, 2021, 7, 347-362.	4.9	7
2	Impact of common sample pre-treatments on key soil microbial properties. Soil Biology and Biochemistry, 2021, 160, 108321.	8.8	29
3	Effect of chemical and mechanical grassland conversion to cropland on soil mineral N dynamics and N2O emission. Agriculture, Ecosystems and Environment, 2020, 298, 106975.	5.3	9
4	Fate and stability of dissolved organic carbon in topsoils and subsoils under beech forests. Biogeochemistry, 2020, 148, 111-128.	3.5	15
5	Vertical partitioning of CO ₂ production in a forest soil. Biogeosciences, 2020, 17, 6341-6356.	3.3	11
6	Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands. Soil Biology and Biochemistry, 2019, 130, 167-176.	8.8	60
7	Application of hydrochar and pyrochar to manure is not effective for mitigation of ammonia emissions from cattle slurry and poultry manure. Biology and Fertility of Soils, 2018, 54, 451-465.	4.3	22
8	Factors controlling the variability of organic matter in the top- and subsoil of a sandy Dystric Cambisol under beech forest. Geoderma, 2018, 311, 37-44.	5.1	55
9	Effects of chemical and physical grassland renovation on the temporal dynamics of organic carbon stocks and waterâ€stable aggregate distribution in a sandy temperate grassland soil. Soil Use and Management, 2018, 34, 490-499.	4.9	2
10	Soil mineral N dynamics and N 2 O emissions following grassland renewal. Agriculture, Ecosystems and Environment, 2017, 246, 325-342.	5.3	33
11	Controlling factors for the stability of subsoil carbon in a Dystric Cambisol. Geoderma, 2017, 304, 40-48.	5.1	54
12	Stability of pyrochar and hydrochar in agricultural soil - a new field incubation method. Geoderma, 2016, 284, 85-92.	5.1	39
13	Fluxes of N2 and N2O and contributing processes in summer after grassland renewal and grassland conversion to maize cropping on a Plaggic Anthrosol and a Histic Gleysol. Soil Biology and Biochemistry, 2016, 101, 6-19.	8.8	56
14	Effects of fresh and aged chars from pyrolysis and hydrothermal carbonization on nutrient sorption in agricultural soils. Soil, 2015, 1, 475-489.	4.9	46
15	Microbial carbon recycling – an underestimated process controlling soil carbon dynamics – Part 1: A long-term laboratory incubation experiment. Biogeosciences, 2015, 12, 5929-5940.	3.3	22
16	Microbial carbon recycling: an underestimated process controlling soil carbon dynamics – Part 2: A C ₃ -C ₄ vegetation change field labelling experiment. Biogeosciences, 2015, 12, 6291-6299.	3.3	8
17	Translocation of 13C-labeled leaf or root litter carbon of beech (Fagus sylvatica L.) and ash (Fraxinus) Tj ETQq1 1 Biochemistry, 2015, 83, 125-137.	0.784314 8.8 	rgBT /Over 24
18	Does water repellency of pyrochars and hydrochars counter their positive effects on soil hydraulic properties?. Geoderma, 2015, 245-246, 31-39.	5.1	60

Mirjam Helfrich

#	Article	IF	CITATIONS
19	The role of soil fungi and bacteria in plant litter decomposition and macroaggregate formation determined using phospholipid fatty acids. Applied Soil Ecology, 2015, 96, 261-264.	4.3	56
20	Pyrochars and hydrochars differently alter the sorption of the herbicide isoproturon in an agricultural soil. Chemosphere, 2015, 119, 155-162.	8.2	51
21	Partitioning of carbon and nitrogen during decomposition of ¹³ C ¹⁵ Nâ€labeled beech and ash leaf litter. Journal of Plant Nutrition and Soil Science, 2014, 177, 178-188.	1.9	9
22	Properties and Degradability of Hydrothermal Carbonization Products. Journal of Environmental Quality, 2013, 42, 1565-1573.	2.0	57
23	Effects of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia spec.) on soil chemical properties in a mixed deciduous forest. Plant and Soil, 2012, 352, 389-403.	3.7	125
24	Effects of residue location on soil organic matter turnover: results from an incubation experiment with 15 N-maize. Journal of Plant Nutrition and Soil Science, 2011, 174, 634-643.	1.9	8
25	Modeling carbon dynamics in subsoils using simple models. Journal of Plant Nutrition and Soil Science, 2010, 173, 671-677.	1.9	5
26	Is thermal oxidation at different temperatures suitable to isolate soil organic carbon fractions with different turnover?. Journal of Plant Nutrition and Soil Science, 2010, 173, 61-66.	1.9	20
27	Effect of conventional and minimum tillage on physical and biochemical stabilization of soil organic matter. Biology and Fertility of Soils, 2010, 46, 671-680.	4.3	53
28	Effect of litter quality and soil fungi on macroaggregate dynamics and associated partitioning of litter carbon and nitrogen. Soil Biology and Biochemistry, 2008, 40, 1823-1835.	8.8	103
29	Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: A synthesis. Journal of Plant Nutrition and Soil Science, 2008, 171, 36-51.	1.9	93
30	Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. European Journal of Soil Science, 2007, 58, 1316-1329.	3.9	154
31	Effect of land use on the composition of soil organic matter in density and aggregate fractions as revealed by solid-state 13C NMR spectroscopy. Geoderma, 2006, 136, 331-341.	5.1	204
32	Near-infrared spectroscopy can predict the composition of organic matter in soil and litter. Journal of Plant Nutrition and Soil Science, 2006, 169, 168-174.	1.9	76
33	Organic matter in density fractions of water-stable aggregates in silty soils: Effect of land use. Soil Biology and Biochemistry, 2006, 38, 3222-3234.	8.8	177
34	Modelling the Long-Term Stabilization of Carbon from Maize in a Silty Soil. Plant and Soil, 2005, 278, 315-325.	3.7	24