Karl-Heinz Storbeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980191/publications.pdf

Version: 2024-02-01

257357 233338 2,189 63 24 45 citations h-index g-index papers 67 67 67 2148 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Differential activity and expression of human $5\hat{l}^2$ -reductase (AKR1D1) splice variants. Journal of Molecular Endocrinology, 2021, 66, 181-194.	1.1	3
2	Peripheral blood mononuclear cells preferentially activate 11-oxygenated androgens. European Journal of Endocrinology, 2021, 184, 353-363.	1.9	11
3	Clinical and Hormonal Profiles Correlate With Molecular Characteristics in Patients With 11β-Hydroxylase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3714-e3724.	1.8	20
4	Computational modelling of the Δ4 and Δ5 adrenal steroidogenic pathways provides insight into hypocortisolism. Molecular and Cellular Endocrinology, 2021, 526, 111194.	1.6	1
5	11-Oxygenated Estrogens Are a Novel Class of Human Estrogens but Do not Contribute to the Circulating Estrogen Pool. Endocrinology, 2021, 162, .	1.4	18
6	The role of adrenal derived androgens in castration resistant prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2020, 197, 105506.	1.2	37
7	The importance of mass spectrometry in unravelling steroid action in breast cancer. Current Opinion in Endocrine and Metabolic Research, 2020, 15, 57-62.	0.6	2
8	Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish larvae. PLoS Genetics, 2020, 16, e1008757.	1.5	26
9	The A-ring reduction of 11-ketotestosterone is efficiently catalysed by AKR1D1 and SRD5A2 but not SRD5A1. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105724.	1.2	13
10	Revisiting Classical $3\hat{1}^2$ -hydroxysteroid Dehydrogenase 2 Deficiency: Lessons from 31 Pediatric Cases. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1718-e1728.	1.8	20
11	The P450 side-chain cleavage enzyme Cyp $11a2$ facilitates steroidogenesis in zebrafish. Journal of Endocrinology, 2020, 244, 309-321.	1.2	22
12	$11\hat{l}^2$ -Hydroxylase loss disrupts steroidogenesis and reproductive function in zebrafish. Journal of Endocrinology, 2020, 247, 197-212.	1.2	14
13	Title is missing!. , 2020, 16, e1008757.		O
14	Title is missing!. , 2020, 16, e1008757.		0
15	Title is missing!. , 2020, 16, e1008757.		O
16	Title is missing!. , 2020, 16, e1008757.		0
17	Title is missing!. , 2020, 16, e1008757.		0
18	Title is missing!. , 2020, 16, e1008757.		0

#	Article	IF	Citations
19	Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine steroid metabolomes: A comprehensive review. Journal of Steroid Biochemistry and Molecular Biology, 2019, 194, 105439.	1.2	225
20	Ferredoxin 1b Deficiency Leads to Testis Disorganization, Impaired Spermatogenesis, and Feminization in Zebrafish. Endocrinology, 2019, 160, 2401-2416.	1.4	14
21	Differential metabolism of clinically-relevant progestogens in cell lines and tissue: Implications for biological mechanisms. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 145-153.	1.2	12
22	Steroid Metabolome Analysis in Disorders of Adrenal Steroid Biosynthesis and Metabolism. Endocrine Reviews, 2019, 40, 1605-1625.	8.9	84
23	Canonical and Noncanonical Androgen Metabolism and Activity. Advances in Experimental Medicine and Biology, 2019, 1210, 239-277.	0.8	8
24	Analysis of multiple vitamin D metabolites by ultra-performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS). Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1087-1088, 43-48.	1.2	25
25	The utility of ultra-high performance supercritical fluid chromatography–tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1085, 36-41.	1.2	38
26	Steroid metabolism in breast cancer: Where are we and what are we missing?. Molecular and Cellular Endocrinology, 2018, 466, 86-97.	1.6	30
27	Data comparing the separation and elution of vitamin D metabolites on an ultra performance supercritical fluid chromatography tandem-mass spectrometer (UPSFC-MS/MS) compared to liquid chromatography (LC) and data presenting approaches to UPSFC method optimization. Data in Brief, 2018, 20, 426-435.	0.5	0
28	11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3): Implications for castration resistant prostate cancer. Journal of Steroid Biochemistry and Molecular Biology, 2018, 183, 192-201.	1.2	51
29	Intracrine androgen biosynthesis, metabolism and action revisited. Molecular and Cellular Endocrinology, 2018, 465, 4-26.	1.6	144
30	Modified release and conventional glucocorticoids and diurnal androgen excretion in congenital adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2855.	1.8	38
31	11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 840-848.	1.8	192
32	A new dawn for androgens: Novel lessons from 11-oxygenated C19 steroids. Molecular and Cellular Endocrinology, 2017, 441, 76-85.	1.6	112
33	Progestins used in endocrine therapy and the implications for the biosynthesis and metabolism of endogenous steroid hormones. Molecular and Cellular Endocrinology, 2017, 441, 31-45.	1.6	11
34	Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia. Endocrinology, 2017, 158, 4165-4173.	1.4	24
35	11-Ketotestosterone and 11-Ketodihydrotestosterone in Castration Resistant Prostate Cancer: Potent Androgens Which Can No Longer Be Ignored. PLoS ONE, 2016, 11, e0159867.	1.1	113
36	Fourth-Generation Progestins Inhibit $3\hat{l}^2$ -Hydroxysteroid Dehydrogenase Type 2 and Modulate the Biosynthesis of Endogenous Steroids. PLoS ONE, 2016, 11, e0164170.	1.1	8

3

#	Article	IF	CITATIONS
37	High-throughput analysis of 19 endogenous androgenic steroids by ultra-performance convergence chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1031, 131-138.	1.2	69
38	$11\hat{l}^2$ -hydroxyandrostenedione: Downstream metabolism by $11\hat{l}^2$ HSD, $17\hat{l}^2$ HSD and SRD5A produces novel substrates in familiar pathways. Molecular and Cellular Endocrinology, 2015, 408, 114-123.	1.6	55
39	Relative contribution of P450c17 towards the acute cortisol response: Lessons from sheep and goats. Molecular and Cellular Endocrinology, 2015, 408, 107-113.	1.6	6
40	Cytochrome b5 modulates multiple reactions in steroidogenesis by diverse mechanisms. Journal of Steroid Biochemistry and Molecular Biology, 2015, 151, 66-73.	1.2	25
41	Advances in the analytical methodologies: Profiling steroids in familiar pathways-challenging dogmas. Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 80-92.	1.2	45
42	Rooibos influences glucocorticoid levels and steroid ratios in vivo and in vitro: <scp>A</scp> natural approach in the management of stress and metabolic disorders?. Molecular Nutrition and Food Research, 2014, 58, 537-549.	1.5	18
43	A comparative study of the androgenic properties of progesterone and the progestins, medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 404-415.	1.2	44
44	Cytochrome b5: Novel roles in steroidogenesis. Molecular and Cellular Endocrinology, 2013, 371, 87-99.	1.6	30
45	$11\hat{l}^2$ -Hydroxydihydrotestosterone and 11 -ketodihydrotestosterone, novel C19 steroids with androgenic activity: A putative role in castration resistant prostate cancer?. Molecular and Cellular Endocrinology, 2013, 377, 135-146.	1.6	148
46	$11\hat{l}^2$ -Hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is metabolized in LNCaP cells by $5\hat{l}_{\pm}$ -reductase yielding $11\hat{l}^2$ -hydroxy- $5\hat{l}_{\pm}$ -androstanedione. Journal of Steroid Biochemistry and Molecular Biology, 2013, 138, 132-142.	1.2	80
47	Allosteric interaction between 3î²â€hydroxysteroid dehydrogenaseſî" ⁵ â€ĵî" ⁴ isomerase and cytochrome b ₅ influences cofactor binding. FASEB Journal, 2013, 27, 322-332.	0.2	3
48	Cortisol production in sheep is influenced by the functional expression of two cytochrome P450 17α-hydroxylase/17,20-lyase (CYP17) isoformsl. Journal of Animal Science, 2013, 91, 1193-1206.	0.2	9
49	$11\hat{l}^2$ -Hydroxyandrostenedione Returns to the Steroid Arena: Biosynthesis, Metabolism and Function. Molecules, 2013, 18, 13228-13244.	1.7	46
50	Cytochrome b5 forms homomeric complexes in living cells. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 311-321.	1.2	7
51	The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: Quantification of steroid intermediates and end products in H295R cells. Journal of Steroid Biochemistry and Molecular Biology, 2012, 128, 128-138.	1.2	7 5
52	16î±-Hydroxyprogesterone: Origin, biosynthesis and receptor interaction. Molecular and Cellular Endocrinology, 2011, 336, 92-101.	1.6	22
53	Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 238-247.	1.2	12
54	A single amino acid residue, Ala 105, confers 16α-hydroxylase activity to human cytochrome P450 17α-hydroxylase/17,20 lyase. Journal of Steroid Biochemistry and Molecular Biology, 2010, 119, 112-120.	1.2	41

#	Article	IF	CITATIONS
55	Hypocortisolism in the South African Angora goat: The role of 3βHSD. Molecular and Cellular Endocrinology, 2010, 315, 182-187.	1.6	9
56	CYP17 causes hypocortisolism in the South African Angora goat. Molecular and Cellular Endocrinology, 2009, 300, 121-125.	1.6	7
57	Characterization of a family 54 α-l-arabinofuranosidase from Aureobasidium pullulans. Applied Microbiology and Biotechnology, 2008, 77, 975-983.	1.7	35
58	The development of an ultra performance liquid chromatography-coupled atmospheric pressure chemical ionization mass spectrometry assay for seven adrenal steroids. Analytical Biochemistry, 2008, 372, 11-20.	1.1	31
59	Two CYP17 genes in the South African Angora goat (<i>Capra hircus</i>) – the identification of three genotypes that differ in copy number and steroidogenic output. FEBS Journal, 2008, 275, 3934-3943.	2.2	9
60	The Identification of Two CYP17 Alleles in the South African Angora Goat. Drug Metabolism Reviews, 2007, 39, 467-480.	1.5	20
61	Evidence for the functional role of residues in the B′–C loop of baboon cytochrome P450 side-chain cleavage (CYP11A1) obtained by site-directed mutagenesis, kinetic analysis and homology modelling. Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 65-75.	1.2	1
62	Cytochrome P450 side-chain cleavage: Insights gained from homology modeling. Molecular and Cellular Endocrinology, 2007, 265-266, 65-70.	1.6	20
63	The Influence of the Amino Acid Substitution I98K on the Catalytic Activity of Baboon Cytochrome P450 Sideâ€Chain Cleavage (CYP11A1). Endocrine Research, 2004, 30, 761-767.	0.6	5