
## Karl-Heinz Storbeck

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980191/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Human steroid biosynthesis, metabolism and excretion are differentially reflected by serum and urine<br>steroid metabolomes: A comprehensive review. Journal of Steroid Biochemistry and Molecular<br>Biology, 2019, 194, 105439.                                             | 1.2 | 225       |
| 2  | 11-Oxygenated C19 Steroids Are the Predominant Androgens in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 840-848.                                                                                                                  | 1.8 | 192       |
| 3  | 11β-Hydroxydihydrotestosterone and 11-ketodihydrotestosterone, novel C19 steroids with androgenic<br>activity: A putative role in castration resistant prostate cancer?. Molecular and Cellular<br>Endocrinology, 2013, 377, 135-146.                                         | 1.6 | 148       |
| 4  | Intracrine androgen biosynthesis, metabolism and action revisited. Molecular and Cellular Endocrinology, 2018, 465, 4-26.                                                                                                                                                     | 1.6 | 144       |
| 5  | 11-Ketotestosterone and 11-Ketodihydrotestosterone in Castration Resistant Prostate Cancer: Potent<br>Androgens Which Can No Longer Be Ignored. PLoS ONE, 2016, 11, e0159867.                                                                                                 | 1.1 | 113       |
| 6  | A new dawn for androgens: Novel lessons from 11-oxygenated C19 steroids. Molecular and Cellular<br>Endocrinology, 2017, 441, 76-85.                                                                                                                                           | 1.6 | 112       |
| 7  | Steroid Metabolome Analysis in Disorders of Adrenal Steroid Biosynthesis and Metabolism. Endocrine<br>Reviews, 2019, 40, 1605-1625.                                                                                                                                           | 8.9 | 84        |
| 8  | 11β-Hydroxyandrostenedione, the product of androstenedione metabolism in the adrenal, is<br>metabolized in LNCaP cells by 5α-reductase yielding 11β-hydroxy-5α-androstanedione. Journal of Steroid<br>Biochemistry and Molecular Biology, 2013, 138, 132-142.                 | 1.2 | 80        |
| 9  | The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis:<br>Quantification of steroid intermediates and end products in H295R cells. Journal of Steroid<br>Biochemistry and Molecular Biology, 2012, 128, 128-138.                     | 1.2 | 75        |
| 10 | High-throughput analysis of 19 endogenous androgenic steroids by ultra-performance convergence<br>chromatography tandem mass spectrometry. Journal of Chromatography B: Analytical Technologies in<br>the Biomedical and Life Sciences, 2016, 1031, 131-138.                  | 1.2 | 69        |
| 11 | 11β-hydroxyandrostenedione: Downstream metabolism by 11βHSD, 17βHSD and SRD5A produces novel substrates in familiar pathways. Molecular and Cellular Endocrinology, 2015, 408, 114-123.                                                                                       | 1.6 | 55        |
| 12 | 11-Oxygenated androgen precursors are the preferred substrates for aldo-keto reductase 1C3 (AKR1C3):<br>Implications for castration resistant prostate cancer. Journal of Steroid Biochemistry and Molecular<br>Biology, 2018, 183, 192-201.                                  | 1.2 | 51        |
| 13 | 11β-Hydroxyandrostenedione Returns to the Steroid Arena: Biosynthesis, Metabolism and Function.<br>Molecules, 2013, 18, 13228-13244.                                                                                                                                          | 1.7 | 46        |
| 14 | Advances in the analytical methodologies: Profiling steroids in familiar pathways-challenging dogmas. Journal of Steroid Biochemistry and Molecular Biology, 2015, 153, 80-92.                                                                                                | 1.2 | 45        |
| 15 | A comparative study of the androgenic properties of progesterone and the progestins,<br>medroxyprogesterone acetate (MPA) and norethisterone acetate (NET-A). Journal of Steroid<br>Biochemistry and Molecular Biology, 2014, 143, 404-415.                                   | 1.2 | 44        |
| 16 | A single amino acid residue, Ala 105, confers 16α-hydroxylase activity to human cytochrome P450<br>17α-hydroxylase/17,20 lyase. Journal of Steroid Biochemistry and Molecular Biology, 2010, 119, 112-120.                                                                    | 1.2 | 41        |
| 17 | Modified release and conventional glucocorticoids and diurnal androgen excretion in congenital adrenal hyperplasia. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2855.                                                                                | 1.8 | 38        |
| 18 | The utility of ultra-high performance supercritical fluid chromatography–tandem mass spectrometry<br>(UHPSFC-MS/MS) for clinically relevant steroid analysis. Journal of Chromatography B: Analytical<br>Technologies in the Biomedical and Life Sciences, 2018, 1085, 36-41. | 1.2 | 38        |

KARL-HEINZ STORBECK

| #  | Article                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The role of adrenal derived androgens in castration resistant prostate cancer. Journal of Steroid<br>Biochemistry and Molecular Biology, 2020, 197, 105506.                                                                                                        | 1.2 | 37        |
| 20 | Characterization of a family 54 α-l-arabinofuranosidase from Aureobasidium pullulans. Applied<br>Microbiology and Biotechnology, 2008, 77, 975-983.                                                                                                                | 1.7 | 35        |
| 21 | The development of an ultra performance liquid chromatography-coupled atmospheric pressure chemical ionization mass spectrometry assay for seven adrenal steroids. Analytical Biochemistry, 2008, 372, 11-20.                                                      | 1.1 | 31        |
| 22 | Cytochrome b5: Novel roles in steroidogenesis. Molecular and Cellular Endocrinology, 2013, 371, 87-99.                                                                                                                                                             | 1.6 | 30        |
| 23 | Steroid metabolism in breast cancer: Where are we and what are we missing?. Molecular and Cellular Endocrinology, 2018, 466, 86-97.                                                                                                                                | 1.6 | 30        |
| 24 | Bidirectional crosstalk between Hypoxia-Inducible Factor and glucocorticoid signalling in zebrafish<br>larvae. PLoS Genetics, 2020, 16, e1008757.                                                                                                                  | 1.5 | 26        |
| 25 | Cytochrome b5 modulates multiple reactions in steroidogenesis by diverse mechanisms. Journal of<br>Steroid Biochemistry and Molecular Biology, 2015, 151, 66-73.                                                                                                   | 1.2 | 25        |
| 26 | Analysis of multiple vitamin D metabolites by ultra-performance supercritical fluid<br>chromatography-tandem mass spectrometry (UPSFC-MS/MS). Journal of Chromatography B: Analytical<br>Technologies in the Biomedical and Life Sciences, 2018, 1087-1088, 43-48. | 1.2 | 25        |
| 27 | Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia. Endocrinology, 2017,<br>158, 4165-4173.                                                                                                                                           | 1.4 | 24        |
| 28 | 16α-Hydroxyprogesterone: Origin, biosynthesis and receptor interaction. Molecular and Cellular<br>Endocrinology, 2011, 336, 92-101.                                                                                                                                | 1.6 | 22        |
| 29 | The P450 side-chain cleavage enzyme Cyp11a2 facilitates steroidogenesis in zebrafish. Journal of<br>Endocrinology, 2020, 244, 309-321.                                                                                                                             | 1.2 | 22        |
| 30 | The Identification of Two CYP17 Alleles in the South African Angora Goat. Drug Metabolism Reviews, 2007, 39, 467-480.                                                                                                                                              | 1.5 | 20        |
| 31 | Cytochrome P450 side-chain cleavage: Insights gained from homology modeling. Molecular and<br>Cellular Endocrinology, 2007, 265-266, 65-70.                                                                                                                        | 1.6 | 20        |
| 32 | Revisiting Classical 3β-hydroxysteroid Dehydrogenase 2 Deficiency: Lessons from 31 Pediatric Cases.<br>Journal of Clinical Endocrinology and Metabolism, 2020, 105, e1718-e1728.                                                                                   | 1.8 | 20        |
| 33 | Clinical and Hormonal Profiles Correlate With Molecular Characteristics in Patients With<br>11β-Hydroxylase Deficiency. Journal of Clinical Endocrinology and Metabolism, 2021, 106, e3714-e3724.                                                                  | 1.8 | 20        |
| 34 | Rooibos influences glucocorticoid levels and steroid ratios in vivo and in vitro: <scp>A</scp><br>natural approach in the management of stress and metabolic disorders?. Molecular Nutrition and<br>Food Research, 2014, 58, 537-549.                              | 1.5 | 18        |
| 35 | 11-Oxygenated Estrogens Are a Novel Class of Human Estrogens but Do not Contribute to the<br>Circulating Estrogen Pool. Endocrinology, 2021, 162, .                                                                                                                | 1.4 | 18        |
| 36 | Ferredoxin 1b Deficiency Leads to Testis Disorganization, Impaired Spermatogenesis, and Feminization<br>in Zebrafish. Endocrinology, 2019, 160, 2401-2416.                                                                                                         | 1.4 | 14        |

KARL-HEINZ STORBECK

| #  | Article                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | 11β-Hydroxylase loss disrupts steroidogenesis and reproductive function in zebrafish. Journal of<br>Endocrinology, 2020, 247, 197-212.                                                                      | 1.2 | 14        |
| 38 | The A-ring reduction of 11-ketotestosterone is efficiently catalysed by AKR1D1 and SRD5A2 but not SRD5A1. Journal of Steroid Biochemistry and Molecular Biology, 2020, 202, 105724.                         | 1.2 | 13        |
| 39 | Cytochrome b5 augments 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase activity. Journal of Steroid<br>Biochemistry and Molecular Biology, 2011, 127, 238-247.                                              | 1.2 | 12        |
| 40 | Differential metabolism of clinically-relevant progestogens in cell lines and tissue: Implications for<br>biological mechanisms. Journal of Steroid Biochemistry and Molecular Biology, 2019, 189, 145-153. | 1.2 | 12        |
| 41 | Progestins used in endocrine therapy and the implications for the biosynthesis and metabolism of endogenous steroid hormones. Molecular and Cellular Endocrinology, 2017, 441, 31-45.                       | 1.6 | 11        |
| 42 | Peripheral blood mononuclear cells preferentially activate 11-oxygenated androgens. European<br>Journal of Endocrinology, 2021, 184, 353-363.                                                               | 1.9 | 11        |
| 43 | Two CYP17 genes in the South African Angora goat ( <i>Capra hircus</i> ) – the identification of three genotypes that differ in copy number and steroidogenic output. FEBS Journal, 2008, 275, 3934-3943.   | 2.2 | 9         |
| 44 | Hypocortisolism in the South African Angora goat: The role of 3βHSD. Molecular and Cellular<br>Endocrinology, 2010, 315, 182-187.                                                                           | 1.6 | 9         |
| 45 | Cortisol production in sheep is influenced by the functional expression of two cytochrome P450<br>17α-hydroxylase/17,20-lyase (CYP17) isoformsl. Journal of Animal Science, 2013, 91, 1193-1206.            | 0.2 | 9         |
| 46 | Fourth-Generation Progestins Inhibit 3β-Hydroxysteroid Dehydrogenase Type 2 and Modulate the<br>Biosynthesis of Endogenous Steroids. PLoS ONE, 2016, 11, e0164170.                                          | 1.1 | 8         |
| 47 | Canonical and Noncanonical Androgen Metabolism and Activity. Advances in Experimental Medicine and Biology, 2019, 1210, 239-277.                                                                            | 0.8 | 8         |
| 48 | CYP17 causes hypocortisolism in the South African Angora goat. Molecular and Cellular<br>Endocrinology, 2009, 300, 121-125.                                                                                 | 1.6 | 7         |
| 49 | Cytochrome b5 forms homomeric complexes in living cells. Journal of Steroid Biochemistry and Molecular Biology, 2012, 132, 311-321.                                                                         | 1.2 | 7         |
| 50 | Relative contribution of P450c17 towards the acute cortisol response: Lessons from sheep and goats.<br>Molecular and Cellular Endocrinology, 2015, 408, 107-113.                                            | 1.6 | 6         |
| 51 | The Influence of the Amino Acid Substitution I98K on the Catalytic Activity of Baboon Cytochrome<br>P450 Side hain Cleavage (CYP11A1). Endocrine Research, 2004, 30, 761-767.                               | 0.6 | 5         |
| 52 | Allosteric interaction between 3βâ€hydroxysteroid dehydrogenase/Δ <sup>5</sup> â€Ĵ" <sup>4</sup> isomerase<br>and cytochrome b <sub>5</sub> influences cofactor binding. FASEB Journal, 2013, 27, 322-332.  | 0.2 | 3         |
| 53 | Differential activity and expression of human 5β-reductase (AKR1D1) splice variants. Journal of<br>Molecular Endocrinology, 2021, 66, 181-194.                                                              | 1.1 | 3         |
| 54 | The importance of mass spectrometry in unravelling steroid action in breast cancer. Current Opinion in Endocrine and Metabolic Research, 2020, 15, 57-62.                                                   | 0.6 | 2         |

KARL-HEINZ STORBECK

| #  | Article                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Evidence for the functional role of residues in the B′–C loop of baboon cytochrome P450 side-chain<br>cleavage (CYP11A1) obtained by site-directed mutagenesis, kinetic analysis and homology modelling.<br>Journal of Steroid Biochemistry and Molecular Biology, 2007, 103, 65-75.                       | 1.2 | 1         |
| 56 | Computational modelling of the Δ4 and Δ5 adrenal steroidogenic pathways provides insight into<br>hypocortisolism. Molecular and Cellular Endocrinology, 2021, 526, 111194.                                                                                                                                 | 1.6 | 1         |
| 57 | Data comparing the separation and elution of vitamin D metabolites on an ultra performance supercritical fluid chromatography tandem-mass spectrometer (UPSFC-MS/MS) compared to liquid chromatography (LC) and data presenting approaches to UPSFC method optimization. Data in Brief, 2018. 20. 426-435. | 0.5 | 0         |
| 58 | Title is missing!. , 2020, 16, e1008757.                                                                                                                                                                                                                                                                   |     | 0         |
| 59 | Title is missing!. , 2020, 16, e1008757.                                                                                                                                                                                                                                                                   |     | 0         |
| 60 | Title is missing!. , 2020, 16, e1008757.                                                                                                                                                                                                                                                                   |     | 0         |
| 61 | Title is missing!. , 2020, 16, e1008757.                                                                                                                                                                                                                                                                   |     | 0         |
| 62 | Title is missing!. , 2020, 16, e1008757.                                                                                                                                                                                                                                                                   |     | 0         |
| 63 | Title is missing!. , 2020, 16, e1008757.                                                                                                                                                                                                                                                                   |     | 0         |