
Rüdiger Krahe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Distribution of the cholinergic nuclei in the brain of the weakly electric fish, <scp><i>Apteronotus leptorhynchus</i></scp> : Implications for sensory processing. Journal of Comparative Neurology, 2021, 529, 1810-1829.	1.6	3
2	The weakly electric fish, Apteronotus albifrons, actively avoids experimentally induced hypoxia. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2021, 207, 369-379.	1.6	1
3	The effect of normoxia exposure on hypoxia tolerance and sensory sampling in a swamp-dwelling mormyrid fish. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2020, 240, 110586.	1.8	5
4	Effects of hypoxia on aerobic metabolism and active electrosensory acquisition in the African weakly electric fish <scp><i>Marcusenius victoriae</i></scp> . Journal of Fish Biology, 2020, 96, 496-505.	1.6	7
5	Tracking activity patterns of a multispecies community of gymnotiform weakly electric fish in their neotropical habitat without tagging. Journal of Experimental Biology, 2020, 223, .	1.7	23
6	Predation and Crypsis in the Evolution of Electric Signaling in Weakly Electric Fishes. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	12
7	Tempo and mode of allopatric divergence in the weakly electric fish Sternopygus dariensis in the Isthmus of Panama. Scientific Reports, 2019, 9, 18828.	3.3	15
8	Mitogenomics of Central American weakly-electric fishes. Gene, 2019, 686, 164-170.	2.2	4
9	Evolutionary Drivers of Electric Signal Diversity. Springer Handbook of Auditory Research, 2019, , 191-226.	0.7	2
10	Pattern of aromatase mRNA expression in the brain of a weakly electric fish, Apteronotus leptorhynchus. Journal of Chemical Neuroanatomy, 2018, 90, 70-79.	2.1	8
11	Effects of hypoxia on swimming and sensing in a weakly electric fish. Journal of Experimental Biology, 2018, 221, .	1.7	11
12	Statistics of Natural Communication Signals Observed in the Wild Identify Important Yet Neglected Stimulus Regimes in Weakly Electric Fish. Journal of Neuroscience, 2018, 38, 5456-5465.	3.6	51
13	Hypoxia acclimation increases novelty response strength during fast-starts in the African mormyrid, Marcusenius victoriae. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2017, 213, 36-45.	1.8	2
14	Burst Firing in the Electrosensory System of Gymnotiform Weakly Electric Fish: Mechanisms and Functional Roles. Frontiers in Computational Neuroscience, 2016, 10, 81.	2.1	24
15	Driftâ€driven evolution of electric signals in a Neotropical knifefish. Evolution; International Journal of Organic Evolution, 2016, 70, 2134-2144.	2.3	18
16	Predators inhibit brain cell proliferation in natural populations of electric fish, <i>Brachyhypopomus occidentalis</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152113.	2.6	28
17	Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish. ENeuro, 2016, 3, ENEURO.0115-16.2016.	1.9	10
18	Miocene and Pliocene colonization of the Central American Isthmus by the weakly electric fish <i><scp>B</scp>rachyhypopomus occidentalis</i> (Hypopomidae, Gymnotiformes). Journal of Biogeography, 2014, 41, 1520-1532.	3.0	28

Rüdiger Krahe

#	Article	IF	CITATIONS
19	Neural maps in the electrosensory system of weakly electric fish. Current Opinion in Neurobiology, 2014, 24, 13-21.	4.2	105
20	Statistics of the Electrosensory Input in the Freely Swimming Weakly Electric Fish <i>Apteronotus leptorhynchus</i> . Journal of Neuroscience, 2013, 33, 13758-13772.	3.6	71
21	Distribution of muscarinic acetylcholine receptor mRNA in the brain of the weakly electric fish <i>Apteronotus leptorhynchus</i> . Journal of Comparative Neurology, 2013, 521, 1054-1072.	1.6	11
22	The energetics of electric organ discharge generation in gymnotiform weakly electric fish. Journal of Experimental Biology, 2013, 216, 2459-2468.	1.7	57
23	Neuromodulation of early electrosensory processing in gymnotiform weakly electric fish. Journal of Experimental Biology, 2013, 216, 2442-2450.	1.7	30
24	First record of Gymnotus henni (Albert, Crampton and Maldonado, 2003) in Panama: phylogenetic position and electric signal characterization. Check List, 2013, 9, 655.	0.4	9
25	Communication in troubled waters: responses of fish communication systems to changing environments. Evolutionary Ecology, 2011, 25, 623-640.	1.2	120
26	Electrical signalling of dominance in a wild population of electric fish. Biology Letters, 2011, 7, 197-200.	2.3	43
27	Energetic constraints on electric signalling in wave-type weakly electric fishes. Journal of Experimental Biology, 2011, 214, 4141-4150.	1.7	30
28	Species differences in group size and electrosensory interference in weakly electric fishes: Implications for electrosensory processing. Behavioural Brain Research, 2010, 207, 368-376.	2.2	57
29	Temporal Processing Across Multiple Topographic Maps in the Electrosensory System. Journal of Neurophysiology, 2008, 100, 852-867.	1.8	102
30	Muscarinic Receptors Control Frequency Tuning Through the Downregulation of an A-Type Potassium Current. Journal of Neurophysiology, 2007, 98, 1526-1537.	1.8	35
31	Modeling signal and background components of electrosensory scenes. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2005, 191, 331-345.	1.6	113
32	Burst firing in sensory systems. Nature Reviews Neuroscience, 2004, 5, 13-23.	10.2	389
33	Stimulus Encoding and Feature Extraction by Multiple Sensory Neurons. Journal of Neuroscience, 2002, 22, 2374-2382.	3.6	50
34	Representation of Acoustic Communication Signals by Insect Auditory Receptor Neurons. Journal of Neuroscience, 2001, 21, 3215-3227.	3.6	131
35	Temporal integration vs. parallel processing: coping with the variability of neuronal messages in directional hearing of insects. European Journal of Neuroscience, 2000, 12, 2147-2156.	2.6	29
36	Robustness and Variability of Neuronal Coding by Amplitude-Sensitive Afferents in the Weakly Electric FishEigenmannia. Journal of Neurophysiology, 2000, 84, 189-204.	1.8	68

#	Article	IF	CITATIONS
37	Directional hearing is only weakly dependent on the rise time of acoustic stimuli. Journal of the Acoustical Society of America, 2000, 107, 1067-1070.	1.1	4
38	Long Rise Times of Acoustic Stimuli Improve Directional Hearing in Grasshoppers. Die Naturwissenschaften, 1997, 84, 168-170.	1.6	5
39	A Spark in the Dark: Uncovering Natural Activity Patterns of Mormyrid Weakly Electric Fish. Frontiers in Ecology and Evolution, 0, 10, .	2.2	1