List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7980069/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of differences in characteristics of thick/thin egg whites during storage: Physicochemical, functional and molecular structure characteristics analysis. Food Chemistry, 2022, 369, 130828.	8.2	31
2	Biological roles and clinical significance of estrogen and androgen receptors in head and neck cancers. Journal of Cancer, 2022, 13, 2189-2199.	2.5	6
3	Identification, characterization and binding sites prediction of calcium transporter-embryo egg-derived egg white peptides. Journal of Food Measurement and Characterization, 2022, 16, 2948-2960.	3.2	2
4	Petroleum extract of <i>Farfarae Flos</i> alleviates nasal symptoms by regulating the Th1-Th2 cytokine balance in a mouse model of Allergic Rhinitis. International Journal of Medical Sciences, 2021, 18, 555-563.	2.5	4
5	Tumor microenvironment and immune-related therapies of head and neck squamous cell carcinoma. Molecular Therapy - Oncolytics, 2021, 20, 342-351.	4.4	40
6	Fascin actin-bundling protein 1 in human cancer: Promising biomarker or therapeutic target?. Molecular Therapy - Oncolytics, 2021, 20, 240-264.	4.4	45
7	miR-1207-5p suppresses laryngeal squamous cell carcinoma progression by downregulating SKA3 and inhibiting epithelial-mesenchymal transition. Molecular Therapy - Oncolytics, 2021, 22, 152-165.	4.4	6
8	Application of the CRISPR/Cas9-based gene editing technique in basic research, diagnosis, and therapy of cancer. Molecular Cancer, 2021, 20, 126.	19.2	86
9	Alterations of bacterial communities of vocal cord mucous membrane increases the risk for glottic laryngeal squamous cell carcinoma. Journal of Cancer, 2021, 12, 4049-4063.	2.5	8
10	Epidemiological Analysis of 1234 Cases of Laryngeal Cancer in Shanxi Province, China. Cancer Control, 2021, 28, 107327482110412.	1.8	3
11	c-Myc inactivation of p53 through the pan-cancer IncRNA MILIP drives cancer pathogenesis. Nature Communications, 2020, 11, 4980.	12.8	70
12	circPARD3 drives malignant progression and chemoresistance of laryngeal squamous cell carcinoma by inhibiting autophagy through the PRKCI-Akt-mTOR pathway. Molecular Cancer, 2020, 19, 166.	19.2	93
13	Serum Exosomal miR-941 as a promising Oncogenic Biomarker for Laryngeal Squamous Cell Carcinoma. Journal of Cancer, 2020, 11, 5329-5344.	2.5	28
14	Crosstalk between RNA m6A Modification and Non-coding RNA Contributes to Cancer Growth and Progression. Molecular Therapy - Nucleic Acids, 2020, 22, 62-71.	5.1	59
15	Targeting SKA3 suppresses the proliferation and chemoresistance of laryngeal squamous cell carcinoma via impairing PLK1–AKT axis-mediated glycolysis. Cell Death and Disease, 2020, 11, 919.	6.3	38
16	lpr1 Regulation by Cyclic GMP-AMP Synthase/Interferon Regulatory Factor 3 and Modulation of Irgm1 Expression via p53. Molecular and Cellular Biology, 2020, 40, .	2.3	1
17	Non-coding RNAs in drug resistance of head and neck cancers: A review. Biomedicine and Pharmacotherapy, 2020, 127, 110231.	5.6	18
18	Uncovering the anticancer mechanism of petroleum extracts of Farfarae Flos against Lewis lung cancer by metabolomics and network pharmacology analysis. Biomedical Chromatography, 2020, 34, e4878.	1.7	5

#	Article	IF	CITATIONS
19	Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis. Molecular Cancer, 2020, 19, 99.	19.2	90
20	<i>LY6D</i> as a Chemoresistance Marker Gene and Therapeutic Target for Laryngeal Squamous Cell Carcinoma. Stem Cells and Development, 2020, 29, 774-785.	2.1	22
21	Mass spectrometryâ€based proteomic analysis of FSCN1â€interacting proteins in laryngeal squamous cell carcinoma cells. IUBMB Life, 2019, 71, 1771-1784.	3.4	15
22	Mass Spectrometric Analysis Identifies AIMP1 and LTA4H as FSCN1â€Binding Proteins in Laryngeal Squamous Cell Carcinoma. Proteomics, 2019, 19, e1900059.	2.2	20
23	<i>Astragali radix</i> total flavonoid synergizes cisplatin to inhibit proliferation and enhances the chemosensitivity of laryngeal squamous cell carcinoma. RSC Advances, 2019, 9, 24471-24482.	3.6	5
24	Identification of miRâ€145â€5pâ€Centered Competing Endogenous RNA Network in Laryngeal Squamous Cell Carcinoma. Proteomics, 2019, 19, e1900020.	2.2	15
25	AlloDriver: a method for the identification and analysis of cancer driver targets. Nucleic Acids Research, 2019, 47, W315-W321.	14.5	31
26	Effect of HPV Infection on the Occurrence and Development of Laryngeal Cancer: A Review. Journal of Cancer, 2019, 10, 4455-4462.	2.5	42
27	LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription. Nature Communications, 2019, 10, 5334.	12.8	43
28	<p>miR-424-5p Promotes Proliferation, Migration and Invasion of Laryngeal Squamous Cell Carcinoma</p> . OncoTargets and Therapy, 2019, Volume 12, 10441-10453.	2.0	39
29	Promoter Methylation-Regulated miR-145-5p Inhibits Laryngeal Squamous Cell Carcinoma Progression by Targeting FSCN1. Molecular Therapy, 2019, 27, 365-379.	8.2	88
30	Abstract 4504: MILIP is a pan cancer-associated long noncoding RNA that links MYC to inactivation of p53. , 2019, , .		1
31	MicroRNA-27b Modulates Inflammatory Response and Apoptosis during <i>Mycobacterium tuberculosis</i> Infection. Journal of Immunology, 2018, 200, 3506-3518.	0.8	77
32	Whole-Transcriptome Analysis of CD133+CD144+ Cancer Stem Cells Derived from Human Laryngeal Squamous Cell Carcinoma Cells. Cellular Physiology and Biochemistry, 2018, 47, 1696-1710.	1.6	48
33	Unphosphorylated STAT1 represses apoptosis in macrophages during Mycobacterium tuberculosis infection. Journal of Cell Science, 2017, 130, 1740-1751.	2.0	19
34	Analysis of gene expression profiling variations induced by hsa-miR-145-5p-overexpression in laryngeal squamous cell carcinoma cell line Tu-177. Molecular Medicine Reports, 2017, 16, 5863-5870.	2.4	7
35	Peroxiredoxin 5 is essential for inÂvitro development of bovine SCNT embryos. Theriogenology, 2017, 92, 156-166.	2.1	3
36	SC1 Promotes MiR124-3p Expression to Maintain the Self-Renewal of Mouse Embryonic Stem Cells by Inhibiting the MEK/ERK Pathway. Cellular Physiology and Biochemistry, 2017, 44, 2057-2072.	1.6	7

#	Article	IF	CITATIONS
37	ldentification and characterization of CD133 ⁺ CD44 ⁺ cancer stem cells from human laryngeal squamous cell carcinoma cell lines. Journal of Cancer, 2017, 8, 497-506.	2.5	55
38	MicroRNA-204-5p inhibits invasion and metastasis of laryngeal squamous cell carcinoma by suppressing forkhead box C1. Journal of Cancer, 2017, 8, 2356-2368.	2.5	46
39	Sp110 enhances macrophage resistance to <i>Mycobacterium tuberculosis</i> via inducing endoplasmic reticulum stress and inhibiting anti-apoptotic factors. Oncotarget, 2017, 8, 64050-64065.	1.8	8
40	Maintenance of Self-Renewal and Pluripotency in J1 Mouse Embryonic Stem Cells through Regulating Transcription Factor and MicroRNA Expression Induced by PD0325901. Stem Cells International, 2016, 2016, 1-12.	2.5	11
41	CHIR99021 enhances Klf4 Expression through β-Catenin Signaling and miR-7a Regulation in J1 Mouse Embryonic Stem Cells. PLoS ONE, 2016, 11, e0150936.	2.5	18
42	Generation of TALE nickase-mediated gene-targeted cows expressing human serum albumin in mammary glands. Scientific Reports, 2016, 6, 20657.	3.3	15
43	Generation of transgenic cattle expressing human βâ€defensin 3 as an approach to reducing susceptibility to <i>Mycobacterium bovis</i> infection. FEBS Journal, 2016, 283, 776-790.	4.7	25
44	Inability of FMDV replication in equine kidney epithelial cells is independent of integrin αvβ3 and αvβ6. Virology, 2016, 492, 251-258.	2.4	5
45	The Transcriptional Foundations of Sp110-mediated Macrophage (RAW264.7) Resistance to Mycobacterium tuberculosis H37Ra. Scientific Reports, 2016, 6, 22041.	3.3	26
46	Characterization of promoter of the tuberculosis-resistant gene intracellular pathogen resistance 1. Immunologic Research, 2016, 64, 143-154.	2.9	2
47	The Arginine/Lysine-Rich Element within the DNA-Binding Domain Is Essential for Nuclear Localization and Function of the Intracellular Pathogen Resistance 1. PLoS ONE, 2016, 11, e0162832.	2.5	9
48	GSK3 inhibitors CHIR99021 and 6-bromoindirubin-3′-oxime inhibit microRNA maturation in mouse embryonic stem cells. Scientific Reports, 2015, 5, 8666.	3.3	27
49	Identification of differentially expressed microRNAs in placentas of cloned and normally produced calves by Solexa sequencing. Animal Reproduction Science, 2015, 155, 64-74.	1.5	10
50	Vitamin C induces a pluripotent state in mouse embryonic stem cells by modulating micro <scp>RNA</scp> expression. FEBS Journal, 2015, 282, 685-699.	4.7	49
51	Retinoic Acid Induces Embryonic Stem Cell Differentiation by Altering Both Encoding RNA and microRNA Expression. PLoS ONE, 2015, 10, e0132566.	2.5	59
52	E-Cadherin is Critical for SC1-Induced Colony Growth of F9 Embryonic Carcinoma Cells. Cellular Physiology and Biochemistry, 2014, 33, 501-512.	1.6	5
53	Vitamin C Enhances Nanog Expression Via Activation of the JAK/STAT Signaling Pathway. Stem Cells, 2014, 32, 166-176.	3.2	40
54	A modified piggybac transposon system mediated by exogenous mRNA to perform gene delivery in bovine mammary epithelial cells. Biotechnology and Bioprocess Engineering, 2014, 19, 350-362.	2.6	1

#	Article	IF	CITATIONS
55	Mechanism of SB431542 in inhibiting mouse embryonic stem cell differentiation. Cellular Signalling, 2014, 26, 2107-2116.	3.6	27
56	Oct4 and the small molecule inhibitor, SC1, regulates Tet2 expression in mouse embryonic stem cells. Molecular Biology Reports, 2013, 40, 2897-2906.	2.3	27
57	Vitamin C facilitates pluripotent stem cell maintenance by promoting pluripotency gene transcription. Biochimie, 2013, 95, 2107-2113.	2.6	31
58	CHIR99021 promotes self-renewal of mouse embryonic stem cells by modulation of protein-encoding gene and long intergenic non-coding RNA expression. Experimental Cell Research, 2013, 319, 2684-2699.	2.6	38
59	AICAR Sustains J1 Mouse Embryonic Stem Cell Self-Renewal and Pluripotency by Regulating Transcription Factor and Epigenetic Modulator Expression. Cellular Physiology and Biochemistry, 2013, 32, 459-475.	1.6	17
60	PhiC31 integraseâ€mediated genomic integration and stable gene expression in the mouse mammary gland after gene electrotransfer. Journal of Gene Medicine, 2013, 15, 356-365.	2.8	1
61	Effect of the Time Interval Between Fusion and Activation on Epigenetic Reprogramming and Development of Bovine Somatic Cell Nuclear Transfer Embryos. Cellular Reprogramming, 2013, 15, 134-142.	0.9	6
62	Developmental Potential of Cloned Goat Embryos from an SSEA3+ Subpopulation of Skin Fibroblasts. Cellular Reprogramming, 2013, 15, 159-165.	0.9	6
63	SUMOylation Represses Nanog Expression via Modulating Transcription Factors Oct4 and Sox2. PLoS ONE, 2012, 7, e39606.	2.5	39
64	NIrp2, a Maternal Effect Gene Required for Early Embryonic Development in the Mouse. PLoS ONE, 2012, 7, e30344.	2.5	90
65	Efficient Delivery of DNA and Morpholinos into Mouse Preimplantation Embryos by Electroporation. PLoS ONE, 2012, 7, e43748.	2.5	42
66	Oxamflatin Significantly Improves Nuclear Reprogramming, Blastocyst Quality, and In Vitro Development of Bovine SCNT Embryos. PLoS ONE, 2011, 6, e23805.	2.5	76
67	Aberrant mRNA expression and DNA methylation levels of imprinted genes in cloned transgenic calves that died of large offspring syndrome. Livestock Science, 2011, 141, 24-35.	1.6	15