Qibing Pei

List of Publications by Citations

Source: https://exaly.com/author-pdf/7979962/qibing-pei-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

281 24,679 153 74 h-index g-index citations papers 9.8 7.18 27,350 314 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
281	High-speed electrically actuated elastomers with strain greater than 100%. <i>Science</i> , 2000 , 287, 836-9	33.3	2430
280	Polymer light-emitting electrochemical cells. <i>Science</i> , 1995 , 269, 1086-8	33.3	1403
279	Advances in dielectric elastomers for actuators and artificial muscles. <i>Macromolecular Rapid Communications</i> , 2010 , 31, 10-36	4.8	1075
278	Elastomeric polymer light-emitting devices and displays. <i>Nature Photonics</i> , 2013 , 7, 817-824	33.9	747
277	Semiconducting Polymers: A New Class of Solid-State Laser Materials. <i>Science</i> , 1996 , 273, 1833-1836	33.3	744
276	Efficient Photoluminescence and Electroluminescence from a Soluble Polyfluorene. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7416-7417	16.4	722
275	Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. <i>Polymer</i> , 1994 , 35, 1347-1351	3.9	590
274	Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. <i>Advanced Materials</i> , 2011 , 23, 664-8	24	569
273	Polymer Light-Emitting Electrochemical Cells: In Situ Formation of a Light-Emitting p-n Junction. Journal of the American Chemical Society, 1996 , 118, 3922-9	16.4	540
272	High-field deformation of elastomeric dielectrics for actuators. <i>Materials Science and Engineering C</i> , 2000 , 11, 89-100	8.3	519
271	Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. <i>ACS Nano</i> , 2014 , 8, 1590-600	16.7	516
270	Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. <i>Advanced Materials</i> , 2011 , 23, 3989-94	24	428
269	Emulsion Synthesis of Size-Tunable CH3NH3PbBr3 Quantum Dots: An Alternative Route toward Efficient Light-Emitting Diodes. <i>ACS Applied Materials & Diodes amp; Interfaces</i> , 2015 , 7, 28128-33	9.5	361
268	Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. <i>The Journal of Physical Chemistry</i> , 1992 , 96, 10507-10514		337
267	A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. <i>Advanced Materials</i> , 2016 , 28, 5986-96	24	323
266	Electronic Muscles and Skins: A Review of Soft Sensors and Actuators. <i>Chemical Reviews</i> , 2017 , 117, 11	23 98 .1 <u>1</u> 1	 2 68 4
265	Silver nanowire-polymer composite electrodes for efficient polymer solar cells. <i>Advanced Materials</i> , 2011 , 23, 4453-7	24	288

[1993-1996]

264	Efficient blue polymer light-emitting diodes from a series of soluble poly(paraphenylene)s. <i>Journal of Applied Physics</i> , 1996 , 79, 934	2.5	274	
263	A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. <i>Nature Photonics</i> , 2015 , 9, 233-238	33.9	271	
262	Regioregular copolymers of 3-alkoxythiophene and their photovoltaic application. <i>Journal of the American Chemical Society</i> , 2006 , 128, 8980-6	16.4	264	
261	Interpenetrating Polymer Networks for High-Performance Electroelastomer Artificial Muscles. <i>Advanced Materials</i> , 2006 , 18, 887-891	24	228	
2 60	Dielectric elastomers: generator mode fundamentals and applications 2001,		226	
259	Intrinsically stretchable and transparent thin-film transistors based on printable silver nanowires, carbon nanotubes and an elastomeric dielectric. <i>Nature Communications</i> , 2015 , 6, 7647	17.4	225	
258	Elastomeric transparent capacitive sensors based on an interpenetrating composite of silver nanowires and polyurethane. <i>Applied Physics Letters</i> , 2013 , 102, 083303	3.4	220	
257	Efficient blue-green and white light-emitting electrochemical cells based on poly[9,9-bis(3,6-dioxaheptyl)-fluorene-2,7-diyl]. <i>Journal of Applied Physics</i> , 1997 , 81, 3294-3298	2.5	217	
256	Highly efficient electrocaloric cooling with electrostatic actuation. <i>Science</i> , 2017 , 357, 1130-1134	33.3	206	
255	Recent Advances in Stretchable and Transparent Electronic Materials. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500407	6.4	201	
254	Standards for dielectric elastomer transducers. Smart Materials and Structures, 2015, 24, 105025	3.4	180	
253	Compliant silver nanowire-polymer composite electrodes for bistable large strain actuation. <i>Advanced Materials</i> , 2012 , 24, 1321-7	24	177	
252	Large-area display textiles integrated with functional systems. <i>Nature</i> , 2021 , 591, 240-245	50.4	177	
251	Fault-Tolerant Dielectric Elastomer Actuators using Single-Walled Carbon Nanotube Electrodes. <i>Advanced Materials</i> , 2008 , 20, 621-625	24	176	
250	Multiple-degrees-of-freedom electroelastomer roll actuators. <i>Smart Materials and Structures</i> , 2004 , 13, N86-N92	3.4	172	
249	Efficient blue electroluminescence from a fluorinated polyquinoline. <i>Applied Physics Letters</i> , 1994 , 65, 1272-1274	3.4	172	
248	Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. <i>Advanced Materials</i> , 2011 , 23, 5563-7	24	170	
247	Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. <i>The Journal of Physical Chemistry</i> , 1993 , 97, 6034-6041		168	

246	Solution-processed DPP-based small molecule that gives high photovoltaic efficiency with judicious device optimization. <i>ACS Applied Materials & amp; Interfaces</i> , 2013 , 5, 2033-9	9.5	163
245	Dielectric elastomer artificial muscle actuators: toward biomimetic motion 2002 , 4695, 126		160
244	A healable, semitransparent silver nanowire-polymer composite conductor. <i>Advanced Materials</i> , 2013 , 25, 4186-91	24	159
243	Conjugated polymers and the bending cantilever method: Electrical muscles and smart devices. <i>Advanced Materials</i> , 1992 , 4, 277-278	24	151
242	Intrinsically stretchable transparent electrodes based on silver-nanowire-crosslinked-polyacrylate composites. <i>Nanotechnology</i> , 2012 , 23, 344002	3.4	145
241	Healable capacitive touch screen sensors based on transparent composite electrodes comprising silver nanowires and a furan/maleimide diels-alder cycloaddition polymer. <i>ACS Nano</i> , 2014 , 8, 12874-82	16.7	142
240	Highly stretchable, conductive, and transparent nanotube thin films. <i>Applied Physics Letters</i> , 2009 , 94, 161108	3.4	142
239	Protonation and deprotonation of polypyrrole chain in aqueous solutions. <i>Synthetic Metals</i> , 1991 , 45, 35-48	3.6	142
238	Plastic lasers: Semiconducting polymers as a new class of solid-state laser materials. <i>Synthetic Metals</i> , 1997 , 84, 455-462	3.6	138
237	Thermally Stable Silver Nanowire P olyimide Transparent Electrode Based on Atomic Layer Deposition of Zinc Oxide on Silver Nanowires. <i>Advanced Functional Materials</i> , 2015 , 25, 7512-7520	15.6	134
236	Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures 2002 ,		132
235	Electroelastomer rolls and their application for biomimetic walking robots. <i>Synthetic Metals</i> , 2003 , 135-136, 129-131	3.6	125
234	Imaging the structure of the p-n junction in polymer light-emitting electrochemical cells. <i>Advanced Materials</i> , 1996 , 8, 985-987	24	124
233	Polymer Light-Emitting Electrochemical Cells for High-Efficiency Low-Voltage Electroluminescent Devices. <i>Journal of Display Technology</i> , 2007 , 3, 211-224		123
232	A Flexible and Transparent Thin Film Heater Based on a Silver Nanowire/Heat-resistant Polymer Composite. <i>Macromolecular Materials and Engineering</i> , 2014 , 299, 1403-1409	3.9	122
231	Charge-carrier dynamics in hybrid plasmonic organic solar cells with Ag nanoparticles. <i>Applied Physics Letters</i> , 2011 , 98, 253302	3.4	121
230	1,3,4-Oxadiazole-Containing Polymers as Electron-Injection and Blue Electroluminescent Materials in Polymer Light-Emitting Diodes. <i>Chemistry of Materials</i> , 1995 , 7, 1568-1575	9.6	114
229	Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters. <i>Advanced Materials</i> , 2017 , 29, 1607053	24	113

(2016-2019)

228	Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations. <i>Accounts of Chemical Research</i> , 2019 , 52, 316-325	24.3	113
227	An elastomeric transparent composite electrode based on copper nanowires and polyurethane. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1298-1305	7.1	104
226	Electrochemical muscles: Micromachining fingers and corkscrews. <i>Advanced Materials</i> , 1993 , 5, 630-632	24	104
225	Effects of C70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization. <i>Applied Physics Letters</i> , 2006 , 89, 153507	3.4	103
224	Controllable and reversible tuning of material rigidity for robot applications. <i>Materials Today</i> , 2018 , 21, 563-576	21.8	101
223	Voltage controlled two color light-emitting electrochemical cells. <i>Applied Physics Letters</i> , 1996 , 68, 2708	3-32.7710	100
222	Macrofibers with High Mechanical Performance Based on Aligned Bacterial Cellulose Nanofibers. <i>ACS Applied Materials & Distributed & Distr</i>	9.5	93
221	A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes. <i>Scientific Reports</i> , 2014 , 4, 4307	4.9	89
220	Electrochemical applications of the bending beam method; a novel way to study ion transport in electroactive polymers. <i>Solid State Ionics</i> , 1993 , 60, 161-166	3.3	89
219	An electrically-conductive composite prepared by electrochemical polymerization of pyrrole into polyurethane. <i>Synthetic Metals</i> , 1987 , 22, 145-156	3.6	88
218	Morphological/nanostructural control toward intrinsically stretchable organic electronics. <i>Chemical Society Reviews</i> , 2019 , 48, 1741-1786	58.5	87
217	Large-strain, rigid-to-rigid deformation of bistable electroactive polymers. <i>Applied Physics Letters</i> , 2009 , 95, 192904	3.4	84
216	Electrochemical muscles: Bending strips built from conjugated polymers. <i>Synthetic Metals</i> , 1993 , 57, 3718-3723	3.6	83
215	Synthesizing a new dielectric elastomer exhibiting large actuation strain and suppressed electromechanical instability without prestretching. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2013 , 51, 197-206	2.6	82
214	Stabilizing the Dynamic p IB Junction in Polymer Light-Emitting Electrochemical Cells. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 367-372	6.4	82
213	Ultrahigh strain response of field-actuated elastomeric polymers 2000,		82
212	Bending bilayer strips built from polyaniline for artificial electrochemical muscles. <i>Smart Materials and Structures</i> , 1993 , 2, 1-6	3.4	80
211	Improving the mechanical properties of cellulose diacetate fibers via using an ionic liquid as processing solvent. <i>RSC Advances</i> , 2016 , 6, 1-7	3.7	79

210	High-Z Sensitized Plastic Scintillators: A Review. <i>Advanced Materials</i> , 2018 , 30, e1706956	24	78
209	Cohesively Enhanced Conductivity and Adhesion of Flexible Silver Nanowire Networks by Biocompatible Polymer Sol © el Transition. <i>Advanced Functional Materials</i> , 2015 , 25, 1581-1587	15.6	78
208	Operating mechanism of light-emitting electrochemical cells. <i>Nature Materials</i> , 2008 , 7, 167; author reply 168	27	76
207	Efficient blue light-emitting diodes from a soluble poly (para-phenylene) internal field emission measurement of the energy gap in semiconducting polymers. <i>Synthetic Metals</i> , 1996 , 78, 263-267	3.6	74
206	Electron injection polymer for polymer light-emitting diodes. Journal of Applied Physics, 1995, 77, 4807-	489 9	72
205	Applications of dielectric elastomer actuators 2001 , 4329, 335		70
204	Light-Emitting Electrochemical Cells with Crown Ether as Solid Electrolyte. <i>Journal of the Electrochemical Society</i> , 1997 , 144, L317-L320	3.9	69
203	Transparent Ultra-High-Loading Quantum Dot/Polymer Nanocomposite Monolith for Gamma Scintillation. <i>ACS Nano</i> , 2017 , 11, 6422-6430	16.7	66
202	An aluminum nanoparticle Crylate copolymer nanocomposite as a dielectric elastomer with a high dielectric constant. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1658	7.1	66
201	Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain. <i>Smart Materials and Structures</i> , 2007 , 16, S280-S287	3.4	66
200	Electrode potentials of electronically conducting polymer polypyrrole. <i>Electrochimica Acta</i> , 1992 , 37, 1075-1081	6.7	66
199	Highly flexible organometal halide perovskite quantum dot based light-emitting diodes on a silver nanowire p olymer composite electrode. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 531-538	7.1	62
198	High-field electrostriction of elastomeric polymer dielectrics for actuation 1999,		61
197	Preparation of Solution-Processable Reduced Graphene Oxide/Polybenzoxazole Nanocomposites with Improved Dielectric Properties. <i>Macromolecules</i> , 2015 , 48, 365-372	5.5	59
196	Bright blue electroluminescence from an oxadiazole-containing copolymer. <i>Advanced Materials</i> , 1995 , 7, 559-561	24	58
195	Bistable large-strain actuation of interpenetrating polymer networks. <i>Advanced Materials</i> , 2012 , 24, 65	I 3 -29	57
194	Poly[3-(4-octylphenyl)thiophene], a new processible conducting polymer. <i>Macromolecules</i> , 1992 , 25, 429	9 7.4 30	1156
193	Fully Solution-Based Fabrication of Flexible Light-Emitting Device at Ambient Conditions. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 16632-16639	3.8	54

(2009-2009)

192	Fully bendable polymer light emitting devices with carbon nanotubes as cathode and anode. <i>Applied Physics Letters</i> , 2009 , 95, 203304	3.4	54
191	A Fluorene®xadiazole Copolymer for White Light-Emitting Electrochemical Cells. <i>Macromolecules</i> , 2010 , 43, 1714-1718	5.5	54
190	Phosphorescent light-emitting electrochemical cell. <i>Applied Physics Letters</i> , 2002 , 81, 4278-4280	3.4	54
189	Measurement of the energy gap in semiconducting polymers using the light-emitting electrochemical cell. <i>Chemical Physics Letters</i> , 1996 , 259, 465-468	2.5	54
188	Efficient white polymer light-emitting electrochemical cells. <i>Materials Horizons</i> , 2015 , 2, 338-343	14.4	50
187	Long lifetime, fault-tolerant freestanding actuators based on a silicone dielectric elastomer and self-clearing carbon nanotube compliant electrodes. <i>RSC Advances</i> , 2013 , 3, 2272	3.7	50
186	The role of H+ ions in the electrochemical polymerization of pyrrole. <i>Die Makromolekulare Chemie</i> , 1991 , 192, 1263-1273		50
185	Silver Nanowire-Bacterial Cellulose Composite Fiber-Based Sensor for Highly Sensitive Detection of Pressure and Proximity. <i>ACS Nano</i> , 2020 , 14, 15428-15439	16.7	50
184	Bistable and Reconfigurable Photonic Crystals Electroactive Shape Memory Polymer Nanocomposite for Ink-Free Rewritable Paper. <i>Advanced Functional Materials</i> , 2018 , 28, 1802430	15.6	50
183	Synthesizing a Healable Stretchable Transparent Conductor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2015 , 7, 14140-9	9.5	49
182	Monolithically Integrated Self-Charging Power Pack Consisting of a Silicon Nanowire Array/Conductive Polymer Hybrid Solar Cell and a Laser-Scribed Graphene Supercapacitor. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2018 , 10, 15609-15615	9.5	49
181	Synthesis of bulk-size transparent gadolinium oxide-polymer nanocomposites for gamma ray spectroscopy. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 1970-1976	7.1	47
180	Polymer solution light-emitting devices. <i>Applied Physics Letters</i> , 1999 , 74, 2081-2083	3.4	47
179	Conjugated polymers as smart materials, gas sensors and actuators using bending beams. <i>Synthetic Metals</i> , 1993 , 57, 3730-3735	3.6	47
178	Hierarchically Structured Stretchable Conductive Hydrogels for High-Performance Wearable Strain Sensors and Supercapacitors. <i>Matter</i> , 2020 , 3, 1196-1210	12.7	46
177	Mechanically robust reduced graphene oxide/bacterial cellulose film obtained via biosynthesis for flexible supercapacitor. <i>Chemical Engineering Journal</i> , 2019 , 360, 829-837	14.7	46
176	Facile Single-Precursor Synthesis and Surface Modification of Hafnium Oxide Nanoparticles for Nanocomposite ERay Scintillators. <i>Advanced Functional Materials</i> , 2015 , 25, 4607-4616	15.6	45
175	Electrochemical formation of stable p-i-n junction in conjugated polymer thin films. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 8481-6	3.4	45

174	Flexible and stretchable electrodes for next generation polymer electronics: a review. <i>Science China Chemistry</i> , 2016 , 59, 659-671	7.9	44
173	Removable Large-Area Ultrasmooth Silver Nanowire Transparent Composite Electrode. <i>ACS Applied Materials & Materia</i>	9.5	43
172	Stretchable Organometal-Halide-Perovskite Quantum-Dot Light-Emitting Diodes. <i>Advanced Materials</i> , 2019 , 31, e1807516	24	43
171	A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. <i>Meccanica</i> , 2015 , 50, 2815-2824	2.1	43
170	Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots 2003 ,		43
169	Spatial exciton allocation strategy with reduced energy loss for high-efficiency fluorescent/phosphorescent hybrid white organic light-emitting diodes. <i>Materials Horizons</i> , 2017 , 4, 64	1- 1648	42
168	Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint. <i>Applied Physics Letters</i> , 2015 , 106, 133504	3.4	42
167	New Dielectric Elastomers with Variable Moduli. <i>Advanced Functional Materials</i> , 2015 , 25, 4827-4836	15.6	42
166	Nonlinear intermodulation distortion suppression in coherent analog fiber optic link using electro-optic polymeric dual parallel Mach-Zehnder modulator. <i>Optics Express</i> , 2011 , 19, 7865-71	3.3	42
165	Poly(m-phenylene): Conjugated Polymer Host with High Triplet Energy for Efficient Blue Electrophosphorescence. <i>Macromolecules</i> , 2010 , 43, 9608-9612	5.5	42
164	Mitigation of Electrical Failure of Silver Nanowires under Current Flow and the Application for Long Lifetime Organic Light-Emitting Diodes. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600167	6.4	41
163	Polymer light-emitting electrochemical cells: Recent developments to stabilize the p-i-n junction and explore novel device applications. <i>Science China Chemistry</i> , 2013 , 56, 1075-1086	7.9	41
162	Coupled nonlinear oscillation and stability evolution of viscoelastic dielectric elastomers. <i>Soft Matter</i> , 2015 , 11, 7483-93	3.6	40
161	Effects of structure-manipulated molecular stacking on solid-state optical properties and device performances. <i>Polymer Chemistry</i> , 2012 , 3, 2832	4.9	40
160	Conjugated Polymer as Host for High Efficiency Blue and White Electrophosphorescence. <i>Macromolecules</i> , 2011 , 44, 2451-2456	5.5	40
159	E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. <i>Optics Express</i> , 2012 , 20, 12649-57	3.3	39
158	Highly flexible polymer light-emitting devices using carbon nanotubes as both anodes and cathodes. <i>Journal of Photonics for Energy</i> , 2011 , 1, 011003	1.2	39
157	Solid state polymer light-emitting electrochemical cells: Recent developments. <i>Synthetic Metals</i> , 1997 , 85, 1229-1232	3.6	39

(2010-2018)

156	Enhanced dielectric performance of PDMS-based three-phase percolative nanocomposite films incorporating a high dielectric constant ceramic and conductive multi-walled carbon nanotubes. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10829-10837	7.1	39	
155	A Solid-State Intrinsically Stretchable Polymer Solar Cell. <i>ACS Applied Materials & Description</i> (2017, 9, 40523-40532)	9.5	38	
154	Efficient white polymer light-emitting diodes employing a silver nanowire-polymer composite electrode. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14249-54	3.6	38	
153	Dielectric oil coated single-walled carbon nanotube electrodes for stable, large-strain actuation with dielectric elastomers. <i>Sensors and Actuators A: Physical</i> , 2009 , 155, 278-284	3.9	38	
152	Light-emitting electrochemical cells from a blend of p- and n-type luminescent conjugated polymers. <i>Applied Physics Letters</i> , 1997 , 70, 1926-1928	3.4	38	
151	Recent progress on electroelastomer artificial muscles and their application for biomimetic robots 2004 , 5385, 41		37	
150	A cascade electrocaloric cooling device for large temperature lift. <i>Nature Energy</i> , 2020 , 5, 996-1002	62.3	36	
149	Planar light-emitting devices fabricated with luminescent electrochemical polyblends. <i>Applied Physics Letters</i> , 1997 , 70, 934-936	3.4	35	
148	Electrochemical preparation of electrically conducting polyurethane/polyaniline composite. <i>Journal of Applied Polymer Science</i> , 1989 , 38, 1819-1828	2.9	35	
147	Elastomeric Light Emitting Polymer Enhanced by Interpenetrating Networks. <i>ACS Applied Materials & Emp; Interfaces</i> , 2016 , 8, 32504-32511	9.5	34	
146	All-silicone prestrain-locked interpenetrating polymer network elastomers: free-standing silicone artificial muscles with improved performance and robustness. <i>Smart Materials and Structures</i> , 2013 , 22, 055022	3.4	34	
145	Electrochemical polymerization of pyrrole in aqueous buffer solutions. <i>Journal of Electroanalytical Chemistry</i> , 1992 , 322, 153-166	4.1	34	
144	Multifunctional electroelastomer rolls and their application for biomimetic walking robots 2002 , 4698, 246		33	
143	Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability. <i>Composites Part A: Applied Science and Manufacturing</i> , 2018 , 109, 578-584	8.4	32	
142	Efficient One-Pot Synthesis of Colloidal Zirconium Oxide Nanoparticles for High-Refractive-Index Nanocomposites. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 4795-802	9.5	32	
141	Tubular dielectric elastomer actuator for active fluidic control. <i>Smart Materials and Structures</i> , 2015 , 24, 105016	3.4	32	
140	Viscoelastic creep elimination in dielectric elastomer actuation by preprogrammed voltage. <i>Applied Physics Letters</i> , 2014 , 105, 212904	3.4	32	
139	Interpenetrating polymer networks based on acrylic elastomers and plasticizers with improved actuation temperature range. <i>Polymer International</i> , 2010 , 59, 384-390	3.3	32	

138	Efficient Light Extraction of Organic Light-Emitting Diodes on a Fully Solution-Processed Flexible Substrate. <i>Advanced Optical Materials</i> , 2017 , 5, 1700307	8.1	31
137	Refreshable Tactile Display Based on a Bistable Electroactive Polymer and a Stretchable Serpentine Joule Heating Electrode. <i>ACS Applied Materials & Interfaces</i> , 2018 , 10, 24807-24815	9.5	30
136	Solid-state polymer light-emitting electrochemical cells. Synthetic Metals, 1996, 80, 131-136	3.6	30
135	A general gelation strategy for 1D nanowires: dynamically stable functional gels for 3D printing flexible electronics. <i>Nanoscale</i> , 2018 , 10, 20096-20107	7.7	30
134	Synthesis of soluble poly(alkylthiophenes) which are thermally stable in the doped state. <i>Synthetic Metals</i> , 1993 , 55, 1227-1231	3.6	29
133	Multi-Colored Light-Emitting Electrochemical Cells Based on Thermal Activated Delayed Fluorescence Host. <i>Scientific Reports</i> , 2017 , 7, 1524	4.9	28
132	Electro-adaptive microfluidics for active tuning of channel geometry using polymer actuators. <i>Microfluidics and Nanofluidics</i> , 2013 , 14, 345-358	2.8	28
131	Transparent Perovskite Light-Emitting Touch-Responsive Device. ACS Nano, 2017, 11, 11368-11375	16.7	28
130	Dielectric elastomer transducers with enhanced force output and work density. <i>Applied Physics Letters</i> , 2012 , 100, 262902	3.4	28
129	Wide band gap copolymers based on phthalimide: synthesis, characterization, and photovoltaic properties with 3.70% efficiency. <i>Polymer Chemistry</i> , 2013 , 4, 2174	4.9	27
128	Rollerball-Pen-Drawing Technology for Extremely Foldable Paper-Based Electronics. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700098	6.4	26
127	Proton doping of reduced polypyrrole. <i>Synthetic Metals</i> , 1993 , 61, 275-278	3.6	26
126	Capacitive Energy Harvesting Using Highly Stretchable Siliconellarbon Nanotube Composite Electrodes. <i>Advanced Energy Materials</i> , 2014 , 4, 1300659	21.8	25
125	The routes towards processible and stable conducting poly(thiophene)s. Synthetic Metals, 1993 , 55, 122	23 . 622	625
124	Phase-Changing Bistable Electroactive Polymer Exhibiting Sharp Rigid-to-Rubbery Transition. <i>Macromolecules</i> , 2016 , 49, 134-140	5.5	24
123	Synthesis and charge-transporting properties of electron-deficient CN2fluorene based DfA copolymers. <i>Polymer Chemistry</i> , 2012 , 3, 2170	4.9	24
122	Electrochemical Synthesis and Photovoltaic Property of Cadmium Sulfide P olybithiophene Interdigitated Nanohybrid Thin Films. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 19765-19769	3.8	24
121	Electrolyte Gated Polymer Light-Emitting Transistor. <i>Advanced Materials Technologies</i> , 2016 , 1, 160010	36.8	23

(2017-2016)

120	Dissipative performance of dielectric elastomers under various voltage waveforms. <i>Soft Matter</i> , 2016 , 12, 2348-56	3.6	23
119	Homogeneous Freestanding Luminescent Perovskite Organogel with Superior Water Stability. <i>Advanced Materials</i> , 2019 , 31, e1902928	24	23
118	Synthesis and characterization of a main-chain-type conjugated copolymer containing rare earth with photocrosslinkable group. <i>Journal of Polymer Science Part A</i> , 2007 , 45, 388-394	2.5	22
117	Electroelastomers: Conjugated poly(3-octylthiophene) gels with controlled crosslinking. <i>Synthetic Metals</i> , 1993 , 57, 3724-3729	3.6	22
116	Optimizing the Output of a Human-Powered Energy Harvesting System With Miniaturization and Integrated Control. <i>IEEE Sensors Journal</i> , 2014 , 14, 2084-2091	4	21
115	Photoluminescence quenching of conjugated polymer nanocomposites for gamma ray detection. <i>Nanotechnology</i> , 2008 , 19, 505503	3.4	21
114	Fundamentals of Materials Selection for Light-Emitting Electrochemical Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 1909102	15.6	20
113	A Solution Processed Flexible Nanocomposite Substrate with Efficient Light Extraction via Periodic Wrinkles for White Organic Light-Emitting Diodes. <i>Advanced Optical Materials</i> , 2018 , 6, 1801015	8.1	19
112	Solution-Processed Warm White Organic Light-Emitting Diodes Based on a Blue Thermally Activated Delayed Fluorescence Dendrimer. <i>ChemPlusChem</i> , 2018 , 83, 274-278	2.8	18
111	Preparation of multiblock copolymers step-wise addition of l-lactide and trimethylene carbonate. <i>Chemical Science</i> , 2018 , 9, 2168-2178	9.4	18
110	Tactile feedback display with spatial and temporal resolutions. Scientific Reports, 2013, 3, 2521	4.9	18
109	Fluorescence resonance energy transfer in conjugated polymer composites for radiation detection. <i>Physical Chemistry Chemical Physics</i> , 2008 , 10, 1848-51	3.6	18
108	Poly(3-octylthiophene-co-3-methylthiophene), a processible and stable conducting copolymer. <i>Synthetic Metals</i> , 1992 , 46, 353-357	3.6	17
107	Pulse shape discrimination properties of plastic scintillators incorporating a rationally designed highly soluble and polymerizable derivative of 9,10-diphenylanthracene. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated</i>	1.2	16
106	Improvement on output torque of dielectric elastomer minimum energy structures. <i>Applied Physics Letters</i> , 2015 , 107, 063505	3.4	16
105	Gram-Scale Synthesis of Blue-Emitting CHNHPbBr Quantum Dots Through Phase Transfer Strategy. <i>Frontiers in Chemistry</i> , 2018 , 6, 444	5	16
104	Dielectric Elastomers for Actuators and Artificial Muscles 2012 , 1-56		16
103	Gate-Tunable Electron Injection Based Organic Light-Emitting Diodes for Low-Cost and Low-Voltage Active Matrix Displays. <i>ACS Applied Materials & Displays (Naterials & Displays)</i> 16750-16755	9.5	15

12

12

Study on core free rolled actuator based on soft dielectric EAP 2008,

Ultra-High Strain Response of Elastomeric Polymer Dielectrics. Materials Research Society Symposia

Proceedings, 1999, 600, 119

86

85

(2007-2019)

84	Flexible graphene composites with high thermal conductivity as efficient heat sinks in high-power LEDs. <i>Journal Physics D: Applied Physics</i> , 2019 , 52, 025103	3	12
83	The Feasibility of Healable Electronics and Mechanical Behavior of Silver Nanowire (AgNW)/Healable Polymer Composite. <i>Advanced Materials Technologies</i> , 2018 , 3, 1700364	6.8	11
82	Factors influencing the performance of dielectric elastomer energy harvesters 2010,		11
81	Self-clearable carbon nanotube electrodes for improved performance of dielectric elastomer actuators 2008 ,		11
80	Intensification of Vertical Phase Separation for Efficient Polymer Solar Cell via Piecewise Spray Assisted by a Solvent Driving Force. <i>Solar Rrl</i> , 2020 , 4, 1900458	7.1	11
79	Electrolyte-gated light-emitting transistors: working principle and applications. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 253-263	7.8	11
78	Study of White Electroluminescence from a Single-Component Polymer Using an Electrolyte-Gated Diode. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 10112-10118	3.8	10
77	An ambipolar poly(meta-phenylene) copolymer with high triplet energy to host blue and green electrophosphorescence. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9772		10
76	Refreshable tactile displays based on bistable electroactive polymer 2011,		10
75	Electrophosphorescent Polymers for High-Efficiency Light-Emitting Diodes. <i>Current Organic Chemistry</i> , 2010 , 14, 2133-2144	1.7	10
74	Polyaniline nanofibers as a novel electrode material for fault-tolerant dielectric elastomer actuators 2008 ,		10
73	Characterization of electroelastomers based on interpenetrating polymer networks 2007,		10
72	New electrode materials for dielectric elastomer actuators 2007,		10
71	Intrinsically stretchable field-effect transistors. MRS Bulletin, 2017, 42, 131-137	3.2	9
70	Atmospheric and Aqueous Deposition of Polycrystalline Metal Oxides Using Mist-CVD for Highly Efficient Inverted Polymer Solar Cells. <i>Nano Letters</i> , 2015 , 15, 4948-54	11.5	9
69	Long lifetime dielectric elastomer actuators under continuous high strain actuation 2009,		9
68	Raman studies of optical phonons in vertical cadmium sulfide nanorod arrays. <i>Journal of Materials Research</i> , 2006 , 21, 2911-2915	2.5	9
67	Stackable Resistive Memory Device Using Photo Cross-linkable Copolymer 2007,		9

66	Synthesis of new processable 3-substituted polythiophenes. <i>Synthetic Metals</i> , 1993 , 55, 1260-1265	3.6	9
65	A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation <i>Science Advances</i> , 2022 , 8, eabm6200	14.3	9
64	Purified polar polyfluorene for light-emitting diodes and light-emitting electrochemical cells. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2012 , 30, 503-510	3.5	8
63	Polymer Optical Waveguide Switch Using Thermo-Optic Total-Internal-Reflection and Strain-Effect. IEEE Photonics Technology Letters, 2010, 22, 197-199	2.2	8
62	Highly efficient blue phosphorescent polymer light-emitting diodes by using interfacial modification. <i>Applied Physics Letters</i> , 2011 , 98, 201110	3.4	8
61	A facile route to bulk high-Z polymer composites for gamma ray scintillation. <i>Chemical Communications</i> , 2008 , 6008-10	5.8	8
60	Conductive liquid metal elastomer thin films with multifunctional electro-mechanical properties. <i>Multifunctional Materials</i> , 2020 , 3, 044001	5.2	8
59	Morphological study of an intrinsically stretchable photovoltaic bulk heterojunction. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2018 , 56, 814-820	2.6	7
58	Fluorene-Benzothiadiazole Copolymer for Single Component Green Light-Emitting Electrochemical Cells. <i>Journal of Display Technology</i> , 2013 , 9, 476-482		7
57	Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers 2010,		7
56	In situpreparation of free-standing nanoporous alumina template for polybithiophene nanotube arrays with a concourse base. <i>Nanotechnology</i> , 2007 , 18, 095602	3.4	7
55	Electro-oxidative polymerization of aniline on platinum anodes coated with polyurethane film. <i>Synthetic Metals</i> , 1989 , 30, 351-358	3.6	7
54	Dielectric elastomers: past, present, and potential future 2018,		7
53	Electrocaloric cooling over high device temperature span. <i>Joule</i> , 2021 , 5, 780-793	27.8	7
52	Plastic scintillators based on thermally activated delayed fluorescence dyes. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2019 , 940, 185-198	1.2	6
51	Stretchable Transparent Wireless Charging Coil Fabricated by Negative Transfer Printing. <i>ACS Applied Materials & Discours (Materials & Discours)</i> , 11, 40677-40684	9.5	6
50	Tunable active vibration attenuation using highly deformable dielectric elastomers. <i>Smart Materials and Structures</i> , 2015 , 24, 115033	3.4	6
49	Dielectric Elastomers for Direct Wind-to-Electricity Power Generation 2009,		6

48	Metal-slotted polymer optical waveguide device. <i>Applied Physics Letters</i> , 2007 , 90, 243507	3.4	6
47	Structures and Materials in Stretchable Electroluminescent Devices. Advanced Materials, 2021, e210618	3 4 4	6
46	A Phase-Changing Polymer Film for Broadband Smart Window Applications. <i>Macromolecular Rapid Communications</i> , 2020 , 41, e2000290	4.8	6
45	A Self-Conformable Smart Skin with Sensing and Variable Stiffness Functions. <i>Advanced Intelligent Systems</i> , 2019 , 1, 1900054	6	5
44	Photoassisted Corona Poled YLD-124/DR1-co-PMMA Electrooptic Device Using Photoisomerization. <i>IEEE Photonics Technology Letters</i> , 2011 , 23, 845-847	2.2	5
43	New high-performance electroelastomer based on interpenetrating polymer networks 2006 , 6168, 70		5
42	Highly conjugated polypyrrole on multiwalled carbon nanotube templates analyzed by Raman spectroscopy 2007 ,		5
41	Multifunctional Electroelastomer Roll Actuators and Their Application for Biomimetic Walking Robots 2003 ,		5
40	Dual-Stimuli-Responsive Polymer Composite with Ultrawide Tunable Stiffness Range Triggered by Water and Temperature. <i>ACS Applied Polymer Materials</i> , 2020 , 2, 2008-2015	4.3	5
39	A Plastic Scintillator Based on an Efficient Thermally Activated Delayed Fluorescence Emitter 9-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)-2-methylphenyl)-3,6-dioctyl-9H-carbazole for Pulse Shape Discrimination Measurement. <i>Advanced Optical Materials</i> , 2021 , 9, 2001975	8.1	5
38	Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength 2013 ,		4
37	Electric lithography by electrochemical polymerization. <i>Applied Physics Letters</i> , 2005 , 87, 124106	3.4	4
36	Automatically Modulated Thermoresponsive Film Based on a Phase-Changing Copolymer. <i>Chemistry of Materials</i> , 2021 , 33, 7232-7241	9.6	4
35	(Invited) Intrinsically-Stretchable, Transparent Thin Film Transistors. <i>ECS Transactions</i> , 2016 , 75, 205-217	21	3
34	Optimizing the configuration and control of a novel human-powered energy harvesting system 2013 ,		3
33	Applications of fluorene moiety containing polymers for improved scintillation light yield. <i>Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</i> , 2017 , 868, 59-65	1.2	3
32	Driving low-power wearable systems with an adaptively-controlled foot-strike scavenging platform 2013 ,		3
31	Multilayer stack actuator made from new prestrain-free dielectric elastomers 2013,		3

30	MULTIPLE-DEGREES-OF-FREEDOM ROLL ACTUATORS 2008 , 91-102		3
29	Ytterbium fluoride loaded plastic scintillators for Fray spectroscopy 2016 ,		3
28	Scintillation Liquids Loaded with Hafnium Oxide Nanoparticles for Spectral Resolution of IRays. <i>ACS Applied Nano Materials</i> , 2021 , 4, 1220-1227	5.6	3
27	12-1: Invited Paper: Stretchable Transparent Electrodes Based on Silver Nanowires. <i>Digest of Technical Papers SID International Symposium</i> , 2017 , 48, 139-142	0.5	2
26	Quantum Dot LEDs: Stretchable Organometal-Halide-Perovskite Quantum-Dot Light-Emitting Diodes (Adv. Mater. 22/2019). <i>Advanced Materials</i> , 2019 , 31, 1970157	24	2
25	Single-Layer White Polymer Phosphorescent Light-Emitting Diodes Employing Poly(Ethylene Glycol) Dimethyl Ether Blended in the Emissive Layer as Functional Interlayer. <i>Journal of Display Technology</i> , 2013 , 9, 483-489		2
24	Energy conversion efficiency of dielectric elastomer energy harvesters under pure shear strain conditions 2012 ,		2
23	Poly(1,4-phenylene-1,2-diphenylvinylene) and tris(8-quinolinolato)aluminum bilayer light-emitting diodes. <i>Polymers for Advanced Technologies</i> , 1997 , 8, 431-436	3.2	2
22	Stiffness variable polymers comprising phase-changing side-chains: material syntheses and application explorations <i>Advanced Materials</i> , 2022 , e2109798	24	2
21	Highly transparent and conductive metal oxide/metal/polymer composite electrodes for high-efficiency flexible organic light-emitting devices. <i>Nanophotonics</i> , 2020 , 9, 3567-3573	6.3	2
20	Bioinspired four-dimensional polymeric aerogel with programmable temporal-spatial multiscale structure and functionality. <i>Composites Science and Technology</i> , 2021 , 206, 108677	8.6	2
19	Formation of unique three-dimensional interpenetrating network structure with a ternary composite. <i>Journal of Materials Science: Materials in Electronics</i> , 2018 , 29, 18699-18707	2.1	2
18	Synthesis of transparent nanocomposite monoliths for gamma scintillation 2015,		1
17	Dielectric Elastomers as EAPs: Applications 2016 , 739-765		1
16	Dielectric Elastomers as EAPs: Applications 2016 , 1-27		1
15	Multifunctional Fiber Solar Cell Based on TiO2 Composite Materials. <i>Materials Research Society Symposia Proceedings</i> , 2011 , 1325, 85		1
14	Acrylic interpenetrating polymer network dielectric elastomers for energy harvesting 2011,		1
13	INTERPENETRATING POLYMER NETWORKS AS HIGH PERFORMANCE DIELECTRIC ELASTOMERS 2008 , 43-50		1

LIST OF PUBLICATIONS

12	Polymer Composites for Radiation Detection: Diiodobenzene and light emitting polymer molecular solutions for gamma detection. <i>Materials Research Society Symposia Proceedings</i> , 2007 , 1038, 1		1
11	Blue Light Emitting Polymers and Devices. ACS Symposium Series, 2004, 201-210	0.4	1
10	Bistable electroactive polymers for refreshable tactile displays 2019,		1
9	Ultrastretchable Polyaniline-Based Conductive Organogel with High Strain Sensitivity1477-1483		1
8	Electrocaloric effects in ferroelectric polymers 2022 , 535-570		O
7	Iontronic Electroluminescence Devices: Comparing Halide Perovskites and Conjugated Polymers. ACS Applied Electronic Materials,	4	O
6	Stable Junction Polymer Light-Emitting Electrochemical Cells. <i>Nano-optics and Nanophotonics</i> , 2015 , 87-117	О	
5	Dielectric Elastomers (DEs) as EAPs: Materials 2016 , 1-28		
4	Intrinsically Elastomeric Polymer Light-Emitting Devices. <i>Information Display</i> , 2014 , 30, 12-18	0.8	
3	Artificial muscles based on synthetic dielectric elastomers. <i>Annual International Conference of the IEEE Engineering in Medicine and Biology Society Society IEEE Engineering in Medicine and Biology Society Annual International Conference</i> , 2009 , 2009, 6826-9	0.9	
2	Light-Emitting Conjugated Polymers: Fundamentals of Materials Selection for Light-Emitting Electrochemical Cells (Adv. Funct. Mater. 33/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070220	15.6	
1	Dielectric Elastomers (DEs) as EAPs: Materials 2016 , 687-714		