
David J Hughes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7979799/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genetically Predicted Circulating Concentrations of Micronutrients and COVID-19 Susceptibility and Severity: A Mendelian Randomization Study. Frontiers in Nutrition, 2022, 9, 842315.	1.6	5
2	The Associations of Selenoprotein Genetic Variants with the Risks of Colorectal Adenoma and Colorectal Cancer: Case–Control Studies in Irish and Czech Populations. Nutrients, 2022, 14, 2718.	1.7	5
3	Soluble Receptor for Advanced Glycation End-products (sRAGE) and Colorectal Cancer Risk: A Case–Control Study Nested within a European Prospective Cohort. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 182-192.	1.1	7
4	Toenail selenium, plasma selenoprotein P and risk of advanced prostate cancer: A nested caseâ€control study. International Journal of Cancer, 2021, 148, 876-883.	2.3	9
5	Genetically predicted circulating concentrations of micronutrients and risk of colorectal cancer among individuals of European descent: a Mendelian randomization study. American Journal of Clinical Nutrition, 2021, 113, 1490-1502.	2.2	27
6	Plasma concentrations of advanced glycation end-products and colorectal cancer risk in the EPIC study. Carcinogenesis, 2021, 42, 705-713.	1.3	7
7	The Role of Gut Barrier Dysfunction and Microbiome Dysbiosis in Colorectal Cancer Development. Frontiers in Oncology, 2021, 11, 626349.	1.3	54
8	Dietary Advanced Glycation End-Products and Colorectal Cancer Risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) Study. Nutrients, 2021, 13, 3132.	1.7	12
9	Association of Pre-diagnostic Antibody Responses to Escherichia coli and Bacteroides fragilis Toxin Proteins with Colorectal Cancer in a European Cohort. Gut Microbes, 2021, 13, 1-14.	4.3	19
10	Prediagnostic Blood Selenium Status and Mortality among Patients with Colorectal Cancer in Western European Populations. Biomedicines, 2021, 9, 1521.	1.4	8
11	Association of circulating short chain fatty acid levels with colorectal adenomas and colorectal cancer. Clinical Nutrition ESPEN, 2021, 46, 297-304.	0.5	10
12	Dietary Intake of Advanced Glycation End Products (AGEs) and Mortality among Individuals with Colorectal Cancer. Nutrients, 2021, 13, 4435.	1.7	7
13	Expression quantitative trait loci in ABC transporters are associated with survival in 5-FU treated colorectal cancer patients. Mutagenesis, 2020, 35, 273-281.	1.0	2
14	Antibody Responses to <i>Helicobacter pylori</i> and Risk of Developing Colorectal Cancer in a European Cohort. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1475-1481.	1.1	11
15	The Role of Selenium in Health and Disease: Emerging and Recurring Trends. Nutrients, 2020, 12, 1049.	1.7	18
16	Fusobacterium nucleatum tumor DNA levels are associated with survival in colorectal cancer patients. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 1891-1899.	1.3	33
17	Lifestyle and dietary environmental factors in colorectal cancer susceptibility. Molecular Aspects of Medicine, 2019, 69, 2-9.	2.7	157
18	Vitamin D-Related Genes, Blood Vitamin D Levels and Colorectal Cancer Risk in Western European Populations. Nutrients, 2019, 11, 1954.	1.7	19

DAVID J HUGHES

#	Article	IF	CITATIONS
19	Antibody Responses to <i>Fusobacterium nucleatum</i> Proteins in Prediagnostic Blood Samples are not Associated with Risk of Developing Colorectal Cancer. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1552-1555.	1.1	17
20	International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut, 2019, 68, 1624-1632.	6.1	173
21	Association of Selenoprotein and Selenium Pathway Genotypes with Risk of Colorectal Cancer and Interaction with Selenium Status. Nutrients, 2019, 11, 935.	1.7	22
22	Functional Polymorphisms in DNA Repair Genes Are Associated with Sporadic Colorectal Cancer Susceptibility and Clinical Outcome. International Journal of Molecular Sciences, 2019, 20, 97.	1.8	20
23	Prospective evaluation of antibody response to <i>Streptococcus gallolyticus</i> and risk of colorectal cancer. International Journal of Cancer, 2018, 143, 245-252.	2.3	25
24	Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer. Nutrients, 2018, 10, 1812.	1.7	34
25	Relationship between <i>Fusobacterium nucleatum</i> , inflammatory mediators and microRNAs in colorectal carcinogenesis. World Journal of Gastroenterology, 2018, 24, 5351-5365.	1.4	82
26	Circulating copper and zinc levels and risk of hepatobiliary cancers in Europeans. British Journal of Cancer, 2017, 116, 688-696.	2.9	53
27	SLC22A3 polymorphisms do not modify pancreatic cancer risk, but may influence overall patient survival. Scientific Reports, 2017, 7, 43812.	1.6	15
28	The missing link? The potential role of selenium in the development of liver cancer and significance for the general population. Expert Review of Gastroenterology and Hepatology, 2017, 11, 707-709.	1.4	13
29	Pre-diagnostic copper and zinc biomarkers and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Carcinogenesis, 2017, 38, 699-707.	1.3	94
30	Dysregulation of KRAS signaling in pancreatic cancer is not associated with KRAS mutations and outcome. Oncology Letters, 2017, 14, 5980-5988.	0.8	9
31	Prediagnostic selenium status and hepatobiliary cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. American Journal of Clinical Nutrition, 2016, 104, 406-414.	2.2	70
32	Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer, 2015, 15, 329.	1.1	77
33	Elevated levels of 14-3-3 proteins, serotonin, gamma enolase and pyruvate kinase identified in clinical samples from patients diagnosed with colorectal cancer. Clinica Chimica Acta, 2015, 441, 133-141.	0.5	28
34	Selenium status is associated with colorectal cancer risk in the European prospective investigation of cancer and nutrition cohort. International Journal of Cancer, 2015, 136, 1149-1161.	2.3	161
35	Microsomal epoxide hydrolase 1 (EPHX1): Gene, structure, function, and role in human disease. Gene, 2015, 571, 1-8.	1.0	74
36	An analysis of the duplicate testing strategy of an Irish immunochemical FOBT colorectal cancer screening programme. Colorectal Disease, 2013, 15, n/a-n/a.	0.7	2

DAVID J HUGHES

#	Article	IF	CITATIONS
37	<i>TFAP2E–DKK4</i> and Chemoresistance in Colorectal Cancer. New England Journal of Medicine, 2012, 366, 44-53.	13.9	165
38	Clinical correlation and molecular evaluation confirm that the MLH1 p.Arg182Gly (c.544A>G) mutation is pathogenic and causes Lynch syndrome. Familial Cancer, 2012, 11, 509-518.	0.9	4
39	Common variation in the vitamin D receptor gene and risk of inflammatory bowel disease in an Irish case–control study. European Journal of Gastroenterology and Hepatology, 2011, 23, 807-812.	0.8	36
40	Variation in the Vitamin D Receptor Gene is not Associated with Risk of Colorectal Cancer in the Czech Republic. Journal of Gastrointestinal Cancer, 2011, 42, 149-154.	0.6	24
41	Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis, 2010, 31, 1074-1079.	1.3	131
42	Association of gastric disease with polymorphisms in the inflammatory-related genes IL-1B, IL-1RN, IL-10, TNF and TLR4. European Journal of Gastroenterology and Hepatology, 2009, 21, 630-635.	0.8	42
43	Use of association studies to define genetic modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Familial Cancer, 2008, 7, 233-244.	0.9	17
44	Haplotype-Based Analysis of Common Variation in the Acetyl-CoA Carboxylase α Gene and Breast Cancer Risk: A Case-Control Study Nested within the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiology Biomarkers and Prevention, 2007, 16, 409-415.	1.1	12
45	RAD51 135G→C Modifies Breast Cancer Risk among BRCA2 Mutation Carriers: Results from a Combined Analysis of 19 Studies. American Journal of Human Genetics, 2007, 81, 1186-1200.	2.6	217
46	Breast cancer risk inBRCA1 andBRCA2 mutation carriers and polyglutamine repeat length in theAIB1 gene. International Journal of Cancer, 2005, 117, 230-233.	2.3	27
47	Mutation characterization ofCFTR gene in 206 Northern Irish CF families: Thirty mutations, including two novel, account for î©94% of CF chromosomes. , 1996, 8, 340-347.		21