Jeffrey A Whitsett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7979640/publications.pdf

Version: 2024-02-01

124 papers

11,874 citations

52 h-index 30894 102 g-index

134 all docs

134 docs citations

times ranked

134

13562 citing authors

#	Article	IF	CITATIONS
1	Proteomic Analysis of Human Lung Development. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 208-218.	2.5	9
2	Inflammatory blockade prevents injury to the developing pulmonary gas exchange surface in preterm primates. Science Translational Medicine, 2022, 14, eabl8574.	5 . 8	10
3	Blastocyst complementation reveals that NKX2â€1 establishes the proximalâ€peripheral boundary of the airway epithelium. Developmental Dynamics, 2021, 250, 1001-1020.	0.8	10
4	Commentary on the Truncated Splice Variant of the GM-CSF Receptor Beta-Chain in Peripheral Blood Serves as Severity Biomarker of Respiratory Failure in Newborns. Neonatology, 2021, 118, 194-197.	0.9	0
5	VEGF receptor 2 (KDR) protects airways from mucus metaplasia through a Sox9-dependent pathway. Developmental Cell, 2021, 56, 1646-1660.e5.	3.1	13
6	Efficient Transduction of Alveolar Type 2 Cells with Adeno-associated Virus for the Study of Lung Regeneration. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 118-121.	1.4	5
7	Therapeutic Potential of Endothelial Progenitor Cells in Pulmonary Diseases. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 473-488.	1.4	17
8	How Can the Pediatric Community Enhance Funding for Child Health Research?. JAMA Pediatrics, 2021, 175, 1212-1214.	3.3	9
9	YAP regulates alveolar epithelial cell differentiation and AGER via NFIB/KLF5/NKX2-1. IScience, 2021, 24, 102967.	1.9	24
10	Heterogeneity in Human Induced Pluripotent Stem Cell–derived Alveolar Epithelial Type II Cells Revealed with ABCA3/SFTPC Reporters. American Journal of Respiratory Cell and Molecular Biology, 2021, 65, 442-460.	1.4	19
11	A lung tropic AAV vector improves survival in a mouse model of surfactant B deficiency. Nature Communications, 2020, 11, 3929.	5.8	37
12	Glucocorticoid regulates mesenchymal cell differentiation required for perinatal lung morphogenesis and function. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L239-L255.	1.3	19
13	Cell- and tissue-based therapies for lung disease. , 2020, , 1253-1272.		O
14	The Cellular and Physiological Basis for Lung Repair and Regeneration: Past, Present, and Future. Cell Stem Cell, 2020, 26, 482-502.	5. 2	230
15	Postnatal Alveologenesis Depends on FOXF1 Signaling in c-KIT ⁺ Endothelial Progenitor Cells. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 1164-1176.	2.5	49
16	Integration of transcriptomic and proteomic data identifies biological functions in cell populations from human infant lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L347-L360.	1.3	28
17	Dosing and formulation of antenatal corticosteroids for fetal lung maturation and gene expression in rhesus macaques. Scientific Reports, 2019, 9, 9039.	1.6	31
18	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	3.1	57

#	Article	IF	CITATIONS
19	Bronchopulmonary dysplasia. Nature Reviews Disease Primers, 2019, 5, 78.	18.1	541
20	Single cell RNA analysis identifies cellular heterogeneity and adaptive responses of the lung at birth. Nature Communications, 2019, 10, 37.	5.8	165
21	Building and Regenerating the Lung Cell by Cell. Physiological Reviews, 2019, 99, 513-554.	13.1	152
22	Neonatal Lung Disease Associated with TBX4 Mutations. Journal of Pediatrics, 2019, 206, 286-292.e1.	0.9	37
23	Transcription Factors Regulating Embryonic Development of Pulmonary Vasculature. Advances in Anatomy, Embryology and Cell Biology, 2018, 228, 1-20.	1.0	27
24	Reconstructing differentiation networks and their regulation from time series single-cell expression data. Genome Research, 2018, 28, 383-395.	2.4	39
25	Airway Epithelial Differentiation and Mucociliary Clearance. Annals of the American Thoracic Society, 2018, 15, S143-S148.	1.5	173
26	Active epithelial Hippo signaling in idiopathic pulmonary fibrosis. JCI Insight, 2018, 3, .	2.3	106
27	Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Scientific Reports, 2018, 8, 13455.	1.6	31
28	Dissociation, cellular isolation, and initial molecular characterization of neonatal and pediatric human lung tissues. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L576-L583.	1.3	36
29	Time-resolved proteome profiling of normal lung development. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2018, 315, L11-L24.	1.3	25
30	MEG3 is increased in idiopathic pulmonary fibrosis and regulates epithelial cell differentiation. JCI Insight, 2018, 3, .	2.3	65
31	KLF5 controls glutathione metabolism to suppress p190-BCR-ABL+ B-cell lymphoblastic leukemia. Oncotarget, 2018, 9, 29665-29679.	0.8	6
32	SLICE: determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Research, 2017, 45, gkw1278.	6.5	102
33	Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection. Science Translational Medicine, 2017, 9, .	5 . 8	168
34	The FOXM1 inhibitor RCM-1 suppresses goblet cell metaplasia and prevents IL-13 and STAT6 signaling in allergen-exposed mice. Science Signaling, 2017, 10, .	1.6	66
35	Lung Gene Expression Analysis (LGEA): an integrative web portal for comprehensive gene expression data analysis in lung development. Thorax, 2017, 72, 481-484.	2.7	122
36	Differentiation of Human Pluripotent Stem Cells into Functional Lung Alveolar Epithelial Cells. Cell Stem Cell, 2017, 21, 472-488.e10.	5.2	406

#	Article	IF	Citations
37	LungMAP: The Molecular Atlas of Lung Development Program. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L733-L740.	1.3	162
38	TGFBI functions similar to periostin but is uniquely dispensable during cardiac injury. PLoS ONE, 2017, 12, e0181945.	1.1	38
39	Epithelial Gpr 116 regulates pulmonary alveolar homeostasis via Gq $\!/11$ signaling. JCI Insight, 2017, 2, .	2.3	47
40	Alveolar injury and regeneration following deletion of ABCA3. JCI Insight, 2017, 2, .	2.3	37
41	EMC3 coordinates surfactant protein and lipid homeostasis required for respiration. Journal of Clinical Investigation, 2017, 127, 4314-4325.	3.9	48
42	FOXM1 activates AGR2 and causes progression of lung adenomas into invasive mucinous adenocarcinomas. PLoS Genetics, 2017, 13, e1007097.	1.5	48
43	Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight, 2016, 1, e90558.	2.3	442
44	βâ€catenin and Kras/Foxm1 signaling pathway are critical to restrict Sox9 in basal cells during pulmonary branching morphogenesis. Developmental Dynamics, 2016, 245, 590-604.	0.8	34
45	Spatially-Resolved Proteomics: Rapid Quantitative Analysis of Laser Capture Microdissected Alveolar Tissue Samples. Scientific Reports, 2016, 6, 39223.	1.6	69
46	Airway Epithelial KIF3A Regulates Th2 Responses to Aeroallergens. Journal of Immunology, 2016, 197, 4228-4239.	0.4	12
47	Modulating pulmonary inflammation. Science, 2016, 351, 662-663.	6.0	2
48	Soluble ADAM33 initiates airway remodeling to promote susceptibility for allergic asthma in early life. JCI Insight, 2016, 1 , .	2.3	31
49	Systems biology evaluation of cell-free amniotic fluid transcriptome of term and preterm infants to detect fetal maturity. BMC Medical Genomics, 2015, 8, 67.	0.7	25
50	SINCERA: A Pipeline for Single-Cell RNA-Seq Profiling Analysis. PLoS Computational Biology, 2015, 11, e1004575.	1.5	313
51	Diseases of Pulmonary Surfactant Homeostasis. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 371-393.	9.6	193
52	Mesenchymal Wnt signaling promotes formation of sternum and thoracic body wall. Developmental Biology, 2015, 401, 264-275.	0.9	25
53	â€~LungGENS': a web-based tool for mapping single-cell gene expression in the developing lung: FigureÂ1. Thorax, 2015, 70, 1092-1094.	2.7	133
54	"Endodermal Wnt signaling is required for tracheal cartilage formation― Developmental Biology, 2015, 405, 56-70.	0.9	45

#	Article	IF	CITATIONS
55	Alveolar Development and Disease. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 1-7.	1.4	84
56	A novel PI3K inhibitor iMDK suppresses non-small cell lung Cancer cooperatively with A MEK inhibitor. Experimental Cell Research, 2015, 335, 197-206.	1.2	10
57	Respiratory epithelial cells orchestrate pulmonary innate immunity. Nature Immunology, 2015, 16, 27-35.	7.0	588
58	Differential roles of STAT3 in the initiation and growth of lung cancer. Oncogene, 2015, 34, 3804-3814.	2.6	73
59	Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. Journal of Clinical Investigation, 2015, 125, 2021-2031.	3.9	125
60	$TGF \hat{I}^2$ signaling inhibits goblet cell differentiation via SPDEF in conjunctival epithelium. Development (Cambridge), 2014, 141, 4628-4639.	1.2	40
61	SPDEF Inhibits Prostate Carcinogenesis by Disrupting a Positive Feedback Loop in Regulation of the Foxm1 Oncogene. PLoS Genetics, 2014, 10, e1004656.	1.5	75
62	Sox17 is required for normal pulmonary vascular morphogenesis. Developmental Biology, 2014, 387, 109-120.	0.9	61
63	The Molecular Era of Surfactant Biology. Neonatology, 2014, 105, 337-343.	0.9	35
64	Repair and Regeneration of the Respiratory System: Complexity, Plasticity, and Mechanisms of Lung Stem Cell Function. Cell Stem Cell, 2014, 15, 123-138.	5. 2	748
65	Foxa3 Induces Goblet Cell Metaplasia and Inhibits Innate Antiviral Immunity. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 301-313.	2.5	122
66	Epithelial SCAP/INSIG/SREBP Signaling Regulates Multiple Biological Processes during Perinatal Lung Maturation. PLoS ONE, 2014, 9, e91376.	1.1	18
67	Activation of Sterol-response Element-binding Proteins (SREBP) in Alveolar Type II Cells Enhances Lipogenesis Causing Pulmonary Lipotoxicity. Journal of Biological Chemistry, 2012, 287, 10099-10114.	1.6	55
68	SAM-pointed domain ETS factor mediates epithelial cell–intrinsic innate immune signaling during airway mucous metaplasia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16630-16635.	3.3	45
69	Transcriptional Programs Controlling Perinatal Lung Maturation. PLoS ONE, 2012, 7, e37046.	1.1	67
70	Kruppel-Like-Factor 5 (Klf-5) Controls Hematopoietic Stem Cell/Progenitor Bone Marrow Homing and Lodging Through Rab5-Mediated Expression of Active \hat{I}^2 1 Integrin. Blood, 2012, 120, 113-113.	0.6	0
71	Notch and Basal Cells Take Center Stage during Airway Epithelial Regeneration. Cell Stem Cell, 2011, 8, 597-598.	5.2	17
72	Ectopic respiratory epithelial cell differentiation in bronchiolised distal airspaces in idiopathic pulmonary fibrosis. Thorax, 2011, 66, 651-657.	2.7	159

#	Article	IF	Citations
73	Review: The intersection of surfactant homeostasis and innate host defense of the lung: lessons from newborn infants. Innate Immunity, 2010, 16, 138-142.	1.1	24
74	Alveolar Surfactant Homeostasis and the Pathogenesis of Pulmonary Disease. Annual Review of Medicine, 2010, 61, 105-119.	5.0	368
75	Surfactant protein-D regulates the postnatal maturation of pulmonary surfactant lipid pool sizes. Journal of Applied Physiology, 2009, 106, 1545-1552.	1.2	33
76	SPDEF is required for mouse pulmonary goblet cell differentiation and regulates a network of genes associated with mucus production. Journal of Clinical Investigation, 2009, 119, 2914-24.	3.9	329
77	Impact of the epithelial HIF 2 alpha system on lung development. FASEB Journal, 2008, 22, 930.2.	0.2	0
78	Genes and transcriptional programs regulating alveolar homeostasis. Respirology, 2006, 11, S11-S11.	1.3	2
79	Genetic Disorders of Surfactant Homeostasis. Neonatology, 2005, 87, 283-287.	0.9	42
80	Wnt∫î²-catenin signaling acts upstream of N-myc, BMP4, and FGF signaling to regulate proximal–distal patterning in the lung. Developmental Biology, 2005, 283, 226-239.	0.9	286
81	Genetic disorders influencing lung formation and function at birth. Human Molecular Genetics, 2004, 13, R207-R215.	1.4	121
82	SP-B deficiency causes respiratory failure in adult mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L543-L549.	1.3	142
83	Early restriction of peripheral and proximal cell lineages during formation of the lung. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10482-10487.	3.3	471
84	Fibroblast Growth Factor 18 Influences Proximal Programming during Lung Morphogenesis. Journal of Biological Chemistry, 2002, 277, 22743-22749.	1.6	74
85	Hydrophobic Surfactant Proteins in Lung Function and Disease. New England Journal of Medicine, 2002, 347, 2141-2148.	13.9	447
86	GM-CSF Regulates Pulmonary Surfactant Homeostasis and Alveolar Macrophage-Mediated Innate Host Defense. Annual Review of Physiology, 2002, 64, 775-802.	5.6	306
87	Series Introduction: Intrinsic and innate defenses in the lung: intersection of pathways regulating lung morphogenesis, host defense, and repair. Journal of Clinical Investigation, 2002, 109, 565-569.	3.9	31
88	FGF-10 disrupts lung morphogenesis and causes pulmonary adenomas in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L705-L715.	1.3	138
89	GM-CSF regulates protein and lipid catabolism by alveolar macrophages. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 280, L379-L386.	1.3	119
90	SP-D and GM-CSF regulate surfactant homeostasis via distinct mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L697-L703.	1.3	39

#	Article	IF	Citations
91	TGF-?1 perturbs vascular development and inhibits epithelial differentiation in fetal lung in vivo. Developmental Dynamics, 2001, 221, 289-301.	0.8	67
92	Immunolocalization of Sonic Hedgehog (Shh) in Developing Mouse Lung. Journal of Histochemistry and Cytochemistry, 2001, 49, 1593-1603.	1.3	64
93	Expression of Thyroid Transcription Factor-1 in Congenital Cystic Adenomatoid Malformation of the Lung. Pediatric and Developmental Pathology, 2000, 3, 455-461.	0.5	39
94	Temporal/spatial expression of nuclear receptor coactivators in the mouse lung. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L1066-L1074.	1.3	25
95	Regulation and function of CCSP during pulmonary <i>Pseudomonas aeruginosa</i> infection in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L452-L459.	1.3	64
96	Pulmonary-specific expression of SP-D corrects pulmonary lipid accumulation in <i>SP-D</i> pene-targeted mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L365-L373.	1.3	69
97	Adenoviral E3-14.7K protein in LPS-induced lung inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L631-L639.	1.3	26
98	Tolerance of SP-A-deficient mice to hyperoxia or exercise. Journal of Applied Physiology, 2000, 89, 644-648.	1.2	32
99	IL-4 increases surfactant and regulates metabolism in vivo. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L75-L80.	1.3	58
100	Distinct changes in pulmonary surfactant homeostasis in common \hat{l}^2 -chain- and GM-CSF-deficient mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 278, L1164-L1171.	1.3	48
101	Surfactant metabolism in SP-D gene-targeted mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2000, 279, L468-L476.	1.3	86
102	Prolonged Survival in Hereditary Surfactant Protein B (SP-B) Deficiency Associated with a Novel Splicing Mutation. Pediatric Research, 2000, 48, 275-282.	1.1	108
103	CCSP deficiency does not alter surfactant homeostasis during adenoviral infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 277, L983-L987.	1.3	14
104	Forkhead Transcription Factor HFH-4 and Respiratory Epithelial Cell Differentiation. American Journal of Respiratory Cell and Molecular Biology, 1999, 21, 153-154.	1.4	21
105	Surfactant Protein-A Binds Group B Streptococcus Enhancing Phagocytosis and Clearance from Lungs of Surfactant Protein-A–Deficient Mice. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 279-286.	1.4	184
106	HNF-3/Forkhead Homologue-4 (HFH-4) Is Expressed in Ciliated Epithelial Cells in the Developing Mouse Lung. Journal of Histochemistry and Cytochemistry, 1999, 47, 823-831.	1.3	81
107	Surfactant Protein B (SP-B) â^'/â^' Mice Are Rescued by Restoration of SP-B Expression in Alveolar Type II Cells but Not Clara Cells. Journal of Biological Chemistry, 1999, 274, 19168-19174.	1.6	55
108	Molecular mechanisms controlling lung morphogenesis. Clinical Genetics, 1999, 56, 14-27.	1.0	134

#	Article	IF	Citations
109	Molecular mechanisms controlling lung morphogenesis. Clinical Genetics, 1999, 57, 14-27.	1.0	0
110	Immunolocalization of Transforming Growth Factor a and Epidermal Growth Factor Receptor in Lungs of Patients with Cystic Fibrosis. Pediatric and Developmental Pathology, 1999, 2, 415-423.	0.5	45
111	Surfactant Protein B Corrects Oxygen-Induced Pulmonary Dysfunction in Heterozygous Surfactant Protein B–Deficient Mice. Pediatric Research, 1999, 46, 708-708.	1.1	43
112	VEGF enhances pulmonary vasculogenesis and disrupts lung morphogenesis in vivo., 1998, 211, 215-227.		179
113	Thyroid transcription factor-1, hepatocyte nuclear factor-3beta and surfactant protein A and B in the developing chick lung. Journal of Anatomy, 1998, 193, 399-408.	0.9	40
114	Hepatocyte nuclear factor- $3\hat{l}^2$ limits cellular diversity in the developing respiratory epithelium and alters lung morphogenesis in vivo. , 1997, 210, 305-314.		67
115	Surfactant replacement therapy for adult respiratory distress syndrome in children., 1996, 21, 328-336.		18
116	Intraamniotic Administration of an Adenoviral Vector for Gene Transfer to Fetal Sheep and Mouse Tissues. Pediatric Research, 1995, 38, 844-850.	1.1	81
117	Ontogeny of Surfactant Proteins A and B in Human Amniotic Fluid as Indices of Fetal Lung Maturity. Pediatric Research, 1991, 30, 597-605.	1.1	144
118	Failure to Detect Surfactant Protein-Specific Antibodies in Sera of Premature Infants Treated With Survanta, A Modified Bovine Surfactant. Pediatrics, 1991, 87, 505-510.	1.0	37
119	Surfactant protein-A in bronchoalveolar lavage fluid from neonates with RDS on conventional and high-frequency oscillatory ventilation. Pediatric Pulmonology, 1990, 9, 166-169.	1.0	19
120	Immunologic Identification of a Pulmonary Surfactant-Associated Protein of Molecular Weight = 6000 Daltons. Pediatric Research, 1986, 20, 744-749.	1.1	79
121	Î ² -Adrenergic Receptors and Catecholamine Sensitive Adenylate Cyclase in Developing Rat Ventricular Myocardium: Effect of Thyroid Status. Pediatric Research, 1982, 16, 463-469.	1.1	39
122	Ontogeny of \hat{I}^2 -Adrenergic Receptors in the Rat Lung: Effects of Hypothyroidism. Pediatric Research, 1982, 16, 381-387.	1.1	20
123	Developmental Aspects of \hat{l}^2 -Adrenergic Receptors and Catecholamine-Sensitive Adenylate Cyclase in Rat Myocardium. Pediatric Research, 1981, 15, 1363-1369.	1.1	41
124	Genetics of Quorum Sensing Circuitry in Pseudomonas aeruginosa. , 0, , 259-272.		1