Annette Meister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7979599/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A bioinspired glycopolymer for capturing membrane proteins in native-like lipid-bilayer nanodiscs. Nanoscale, 2022, 14, 1855-1867.	5.6	19
2	Filling the Gap with Long <i>n</i> -Alkanes: Incorporation of C20 and C30 into Phospholipid Membranes. Langmuir, 2022, 38, 8595-8606.	3.5	2
3	Azide- and diazirine-modified membrane lipids: Physicochemistry and applicability to study peptide/lipid interactions via cross-linking/mass spectrometry. Biochimica Et Biophysica Acta - Biomembranes, 2022, , 184004.	2.6	2
4	Fluorescent spherical mesoporous silica nanoparticles loaded with emodin: Synthesis, cellular uptake and anticancer activity. Materials Science and Engineering C, 2021, 119, 111619.	7.3	15
5	Towards the Development of Long Circulating Phosphatidylserine (PS)- and Phosphatidylglycerol (PG)-Enriched Anti-Inflammatory Liposomes: Is PEGylation Effective?. Pharmaceutics, 2021, 13, 282.	4.5	8
6	Measuring protein insertion areas in lipid monolayers by fluorescence correlation spectroscopy. Biophysical Journal, 2021, 120, 1333-1342.	0.5	2
7	Nanoscale Model System for the Human Myelin Sheath. Biomacromolecules, 2021, 22, 3901-3912.	5.4	3
8	Selection and Incorporation of siRNA Carrying Non-Viral Vector for Sustained Delivery from Gellan Gum Hydrogels. Pharmaceutics, 2021, 13, 1546.	4.5	3
9	Thinâ€Layer Chromatography and Coomassie Staining of Phospholipids for Fast and Simple Lipidomics Sample Preparation. Analysis & Sensing, 2021, 1, 171-179.	2.0	2
10	A Diazirineâ€Modified Membrane Lipid to Study Peptide/Lipid Interactions – Chances and Challenges. Chemistry - A European Journal, 2021, 27, 14586-14593.	3.3	5
11	Solubilization of artificial mitochondrial membranes by amphiphilic copolymers of different charge. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183725.	2.6	10
12	Thin‣ayer Chromatography and Coomassie Staining of Phospholipids for Fast and Simple Lipidomics Sample Preparation. Analysis & Sensing, 2021, 1, 134.	2.0	0
13	Phosphatidylserine (PS) and phosphatidylglycerol (PG) nanodispersions as potential anti-inflammatory therapeutics: Comparison of in vitro activity and impact of pegylation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 23, 102096.	3.3	19
14	Lipid-Dependent Interaction of Human N-BAR Domain Proteins with Sarcolemma Mono- and Bilayers. Langmuir, 2020, 36, 8695-8704.	3.5	3
15	Tuning the Thickness of a Biomembrane by Stapling Diamidophospholipids with Bolalipids. Langmuir, 2020, 36, 8610-8616.	3.5	2
16	2.7 Ã cryo-EM structure of vitrified M. musculus H-chain apoferritin from a compact 200 keV cryo-microscope. PLoS ONE, 2020, 15, e0232540.	2.5	9
17	Phosphatidylserine (PS) and phosphatidylglycerol (PG) enriched mixed micelles (MM): A new nano-drug delivery system with anti-inflammatory potential?. European Journal of Pharmaceutical Sciences, 2020, 152, 105451.	4.0	14
18	Synthesis and aggregation behaviour of single-chain, 1,32-alkyl-branched bis(phosphocholines) – part 2: lateral chain length triggers self-assembling from sheets to fibres to vesicles. Organic and Biomolecular Chemistry, 2020, 18, 3585-3598.	2.8	3

#	Article	IF	CITATIONS
19	Triphilic pentablock copolymers with perfluoroalkyl segment in central position. Journal of Polymer Science, 2020, 58, 3322-3335.	3.8	2
20	Hybrid Double-Chain Maltose-Based Detergents: Synthesis and Colloidal and Biochemical Evaluation. Journal of Organic Chemistry, 2019, 84, 10606-10614.	3.2	6
21	Azide-Modified Membrane Lipids: Miscibility with Saturated Phosphatidylcholines. Langmuir, 2019, 35, 12439-12450.	3.5	5
22	Nanofiber Formation and Polymerization of Bolalipids with Diacetylene-Modified Single Alkyl Chains. Journal of Physical Chemistry B, 2019, 123, 1566-1577.	2.6	4
23	Influence of Mg2+ and Ca2+ on nanodisc formation by diisobutylene/maleic acid (DIBMA) copolymer. Chemistry and Physics of Lipids, 2019, 221, 30-38.	3.2	46
24	Bolalipid-Doped Liposomes: Can Bolalipids Increase the Integrity of Liposomes Exposed to Gastrointestinal Fluids?. Pharmaceutics, 2019, 11, 646.	4.5	14
25	Mixing behaviour of bilayer-forming phosphatidylcholines with single-chain alkyl-branched bolalipids: effect of lateral chain length. Biophysical Chemistry, 2019, 244, 1-10.	2.8	9
26	Impact of Headgroup Asymmetry and Protonation State on the Aggregation Behavior of a New Type of Glycerol Diether Bolalipid. Langmuir, 2018, 34, 4360-4373.	3.5	10
27	Controlling the Miscibility of X-Shaped Bolapolyphiles in Lipid Membranes by Varying the Chemical Structure and Size of the Polyphile Polar Headgroup. Journal of Physical Chemistry B, 2018, 122, 10861-10871.	2.6	1
28	Mixing behaviour of asymmetrical glycerol diether bolalipids with saturated and unsaturated phosphatidylcholines. Biophysical Chemistry, 2018, 238, 39-48.	2.8	5
29	Solubilisierung von Membranproteinen in funktionelle Lipiddoppelschichtâ€Nanodiscs mithilfe eines Diisobutylen/ Maleinsäreâ€Copolymers. Angewandte Chemie, 2017, 129, 1946-1951.	2.0	13
30	Solubilization of Membrane Proteins into Functional Lipidâ€Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angewandte Chemie - International Edition, 2017, 56, 1919-1924.	13.8	230
31	Azide-Modified Membrane Lipids: Synthesis, Properties, and Reactivity. Langmuir, 2017, 33, 4960-4973.	3.5	13
32	Synthesis of poly(glycerol adipate)-g-oleate and its ternary phase diagram with glycerol monooleate and water. European Polymer Journal, 2017, 91, 162-175.	5.4	12
33	Supramolecular semifluorinated dendrons glued by weak hydrogen-bonds. Chemical Communications, 2017, 53, 8699-8702.	4.1	5
34	An Asymmetrical Glycerol Diether Bolalipid with Protonable Phosphodimethylethanolamine Headgroup: The Impact of pH on Aggregation Behavior and Miscibility with DPPC. Polymers, 2017, 9, 573.	4.5	6
35	Binding of the CTPase Sar1 to a Lipid Membrane Monolayer: Insertion and Orientation Studied by Infrared Reflection–Absorption Spectroscopy. Polymers, 2017, 9, 612.	4.5	9
36	Aggregation behaviour of a single-chain, phenylene-modified bolalipid and its miscibility with classical phospholipids. Beilstein Journal of Organic Chemistry, 2017, 13, 995-1007.	2.2	14

#	Article	IF	CITATIONS
37	(Cryo)Transmission Electron Microscopy of Phospholipid Model Membranes Interacting with Amphiphilic and Polyphilic Molecules. Polymers, 2017, 9, 521.	4.5	23
38	Enzymatic Synthesis and Characterization of Hydrophilic Sugar Based Polyesters and Their Modification with Stearic Acid. Polymers, 2016, 8, 80.	4.5	17
39	Tunable dynamic hydrophobic attachment of guest molecules in amphiphilic core–shell polymers. Polymer Chemistry, 2016, 7, 5783-5798.	3.9	9
40	Structures of malonic acid diamide/phospholipid composites and their lipoplexes. Soft Matter, 2016, 12, 5854-5866.	2.7	15
41	Supramolecular organization of the human N-BAR domain in shaping the sarcolemma membrane. Journal of Structural Biology, 2016, 194, 375-382.	2.8	32
42	Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation. Bioconjugate Chemistry, 2016, 27, 772-781.	3.6	3
43	Hierarchical Micelles via Polyphilic Interactions: Hydrogen-Bonded Supramolecular Dendrons and Double Immiscible Polymers. Nano Letters, 2016, 16, 1491-1496.	9.1	20
44	Lamellar versus Micellar Structures—Aggregation Behavior of a Threeâ€Chain Cationic Lipid Designed for Nonviral Polynucleotide Transfer. ChemPhysChem, 2015, 16, 2115-2126.	2.1	11
45	Lamellar versus Micellar Structures—Aggregation Behavior of a Three hain Cationic Lipid Designed for Nonviral Polynucleotide Transfer. ChemPhysChem, 2015, 16, 2029-2029.	2.1	0
46	Synthesis and structure formation of block copolymers of poly(ethylene glycol) with homopolymers and copolymers of l-glutamic acid Î ³ -benzyl ester and l-leucine in water. Colloid and Polymer Science, 2015, 293, 2147-2155.	2.1	9
47	Synthesis, Characterization, and Nanoencapsulation of Tetrathiatriarylmethyl and Tetrachlorotriarylmethyl (Trityl) Radical Derivatives—A Study To Advance Their Applicability as in Vivo EPR Oxygen Sensors. Journal of Organic Chemistry, 2015, 80, 6754-6766.	3.2	25
48	A Fluorinated Detergent for Membraneâ€Protein Applications. Angewandte Chemie - International Edition, 2015, 54, 5069-5073.	13.8	65
49	Temperature-Dependent In-Plane Structure Formation of an X-Shaped Bolapolyphile within Lipid Bilayers. Langmuir, 2015, 31, 2839-2850.	3.5	11
50	Highly Asymmetrical Glycerol Diether Bolalipids: Synthesis and Temperature-Dependent Aggregation Behavior. Langmuir, 2015, 31, 10683-10692.	3.5	12
51	Investigation of Binary Lipid Mixtures of a Three-Chain Cationic Lipid with Phospholipids Suitable for Gene Delivery. Bioconjugate Chemistry, 2015, 26, 2461-2473.	3.6	14
52	Tris(2-aminoethyl)amine-based α-branched fatty acid amides – Synthesis of lipids and comparative study of transfection efficiency of their lipid formulations. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 96, 349-362.	4.3	5
53	Insights from reconstitution reactions of COPII vesicle formation using pure components and low mechanical perturbation. Biological Chemistry, 2014, 395, 801-812.	2.5	13
54	Phenylene bolaamphiphiles: Influence of the substitution pattern on the aggregation behavior and the miscibility with classical phospholipids. European Journal of Lipid Science and Technology, 2014, 116, 1205-1216.	1.5	16

#	Article	lF	CITATIONS
55	Composites of malonic acid diamides and phospholipids - Structural parameters for optimal transfection efficiency in A549 cells. European Journal of Lipid Science and Technology, 2014, 116, 1184-1194.	1.5	17
56	Structure–property relationships in a series of diglycerol tetraether model lipids and their lyotropic assemblies: the effect of branching topology and chirality. Organic and Biomolecular Chemistry, 2014, 12, 3649.	2.8	21
57	The Headgroup (A)Symmetry Strongly Determines the Aggregation Behavior of Single-Chain Phenylene-Modified Bolalipids and Their Miscibility with Classical Phospholipids. Langmuir, 2014, 30, 9273-9284.	3.5	24
58	Morphological changes of bacterial model membrane vesicles. European Journal of Lipid Science and Technology, 2014, 116, 1228-1233.	1.5	7
59	Self-assembly of different single-chain bolaphospholipids and their miscibility with phospholipids or classical amphiphiles. Advances in Colloid and Interface Science, 2014, 208, 264-278.	14.7	19
60	Tuning the aggregation behaviour of single-chain bolaamphiphiles in aqueous suspension by changes in headgroup asymmetry. Soft Matter, 2013, 9, 9562.	2.7	13
61	Tuning the aggregation behaviour of single-chain bolaphospholipids in aqueous suspension: from nanoparticles to nanofibres to lamellar phases. Faraday Discussions, 2013, 161, 193-213.	3.2	22
62	Synthesis and characterization of graft copolymers able to form polymersomes and worm-like aggregates. Soft Matter, 2013, 9, 10364.	2.7	22
63	Bolalipid fiber aggregation can be modulated by the introduction of sulfur atoms into the spacer chains. Journal of Colloid and Interface Science, 2013, 393, 143-150.	9.4	15
64	The structure of the COPII transport-vesicle coat assembled on membranes. ELife, 2013, 2, e00951.	6.0	112
65	Synthesis of symmetrical, single-chain, phenylene/biphenylene-modified bolaamphiphiles. Monatshefte FA¼r Chemie, 2012, 143, 1533-1543.	1.8	11
66	A T-Shaped Amphiphilic Molecule Forms Closed Vesicles in Water and Bicelles in Mixtures with a Membrane Lipid. Journal of Physical Chemistry B, 2012, 116, 4871-4878.	2.6	18
67	Functionalization of Bolalipid Nanofibers by Silicification and Subsequent One-Dimensional Fixation of Gold Nanoparticles. Langmuir, 2012, 28, 11615-11624.	3.5	2
68	Single-Chain Bolaphospholipids. Behavior Research Methods, 2012, , 93-128.	4.0	14
69	Self-Assembled Bolaamphiphile Fibers Have Intermediate Properties between Crystalline Nanofibers and Wormlike Micelles: Formation of Viscoelastic Hydrogels Switchable by Changes in pH and Salinity. Journal of Physical Chemistry B, 2011, 115, 10478-10487.	2.6	36
70	Water Dynamics in Bolaamphiphile Hydrogels Investigated by ¹ H NMR Relaxometry and Diffusometry. Journal of Physical Chemistry B, 2011, 115, 14-22.	2.6	17
71	Multibudded tubules formed by COPII on artificial liposomes. Scientific Reports, 2011, 1, 17.	3.3	86
72	Synthesis of Optically Pure Diglycerol Tetraether Model Lipids with Nonâ€Natural Branching Pattern. European Journal of Organic Chemistry, 2011, 2011, 5894-5904.	2.4	20

#	Article	IF	CITATIONS
73	Amino-functionalized single-chain bolalipids: Synthesis and aggregation behavior of new basic building blocks. Biophysical Chemistry, 2010, 150, 136-143.	2.8	13
74	Formation of square lamellae by self-assembly of long-chain bolaphospholipids in water. Soft Matter, 2010, 6, 1317.	2.7	31
75	The Motional Dynamics in Bolaamphiphilic Nanofibers and Micellar Aggregates: An ESR Spin Probe Study. Journal of Physical Chemistry B, 2009, 113, 574-582.	2.6	4
76	General Synthesis and Aggregation Behaviour of New Singleâ€Chain Bolaphospholipids: Variations in Chain and Headgroup Structures. Chemistry - A European Journal, 2008, 14, 6796-6804.	3.3	31
77	Temperature-Dependent Self-Assembly and Mixing Behavior of Symmetrical Single-Chain Bolaamphiphiles. Langmuir, 2008, 24, 6238-6246.	3.5	48
78	Helical Nanofibers of Self-Assembled Bipolar Phospholipids as Template for Gold Nanoparticles. Journal of Physical Chemistry B, 2008, 112, 4506-4511.	2.6	55
79	Structureâ^'Property Relationship in Stimulus-Responsive Bolaamphiphile Hydrogels. Langmuir, 2007, 23, 7715-7723.	3.5	61
80	Mixing behaviour of a symmetrical single-chain bolaamphiphile with phospholipids. Soft Matter, 2007, 3, 1025-1031.	2.7	26
81	Evidence for a Reverse U-Shaped Conformation of Single-Chain Bolaamphiphiles at the Airâ^'Water Interface. Langmuir, 2007, 23, 6063-6069.	3.5	19
82	General Synthesis and Aggregation Behaviour of a Series of Single-Chain 1,ï‰-Bis(phosphocholines). Chemistry - A European Journal, 2007, 13, 5300-5307.	3.3	50
83	Self-assembly of bipolar amphiphiles. Current Opinion in Colloid and Interface Science, 2007, 12, 138-147.	7.4	102
84	Conformational and thermal behavior of a pH-sensitive bolaform hydrogelator. Soft Matter, 2006, 2, 77-86.	2.7	47
85	Insertion of Lipidated Ras Proteins into Lipid Monolayers Studied by Infrared Reflection Absorption Spectroscopy (IRRAS). Biophysical Journal, 2006, 91, 1388-1401.	0.5	49
86	Temperature-Dependent Aggregation Behavior of Symmetric Long-Chain Bolaamphiphiles at the Airâ°Water Interface. Langmuir, 2006, 22, 2668-2675.	3.5	19