Jakub Rysz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7979554/publications.pdf

Version: 2024-02-01

218381 288905 2,190 105 26 40 h-index citations g-index papers 107 107 107 2734 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mutual Diffusion of Model Acceptor/Donor Bilayers under Solvent Vapor Annealing as a Novel Route for Organic Solar Cell Fabrication. Energies, 2022, 15, 1033.	1.6	3
2	Electrically Switchable Film Structure of Conjugated Polymer Composites. Materials, 2022, 15, 2219.	1.3	O
3	Stability of oxygen-functionalized graphenic surfaces: Theoretical and experimental insights into electronic properties and wettability. Applied Surface Science, 2021, 539, 148190.	3.1	15
4	Free-standing TiO ₂ nanotubes decorated with spherical nickel nanoparticles as a cost-efficient electrocatalyst for oxygen evolution reaction. RSC Advances, 2021, 11, 219-228.	1.7	8
5	Temperature-Modulated Doping at Polymer Semiconductor Interfaces. ACS Applied Electronic Materials, 2021, 3, 1384-1393.	2.0	O
6	Efficiency Boost in Dye-Sensitized Solar Cells by Post- Annealing UV-Ozone Treatment of TiO2 Mesoporous Layer. Materials, 2021, 14, 4698.	1.3	2
7	The pulsed laser ablation synthesis of colloidal iron oxide nanoparticles for the enhancement of TiO2 nanotubes photo-activity. Applied Surface Science, 2020, 530, 147097.	3.1	20
8	Extraordinary conduction increase in model conjugated/insulating polymer system induced by surface located electric dipoles. Applied Materials Today, 2020, 21, 100880.	2.3	3
9	Magnetron Sputtered Electron Blocking Layer as an Efficient Method to Improve Dye-Sensitized Solar Cell Performance. Energies, 2020, 13, 2690.	1.6	4
10	Phase Separation in PCDTBT:PCBM Blends: from Flory-Huggins Interaction Parameters to Ternary Phase Diagrams. Chinese Journal of Polymer Science (English Edition), 2020, 38, 1025-1033.	2.0	10
11	Biophysical and Biochemical Characteristics as Complementary Indicators of Melanoma Progression. Analytical Chemistry, 2019, 91, 9885-9892.	3.2	17
12	Influence of TiO2 Nanoparticles on Liquid Crystalline, Structural and Electrochemical Properties of (8Z)-N-(4-((Z)-(4-pentylphenylimino)methyl)benzylidene)-4-pentylbenzenamine. Materials, 2019, 12, 1097.	1.3	22
13	Sequential binary protein patterning on surface domains of thermo-responsive polymer blends cast by horizontal-dipping. Materials Science and Engineering C, 2019, 99, 1477-1484.	3.8	4
14	Thermal, structural and electrochemical properties of new aliphatic-aromatic imine with piperazine moieties blended with titanium dioxide. Phase Transitions, 2018, 91, 210-224.	0.6	6
15	Formation and characterization of one-dimensional ZnS nanowires for ZnS/P3HT hybrid polymer solar cells with improved efficiency. Applied Surface Science, 2018, 451, 180-190.	3.1	20
16	Engineering a Poly(3,4-ethylenedioxythiophene):(Polystyrene Sulfonate) Surface Using Self-Assembling Molecules—A Chemical Library Approach. ACS Omega, 2018, 3, 3631-3639.	1.6	12
17	Protein adsorption/desorption and antibody binding stoichiometry on silicon interferometric biosensors examined with TOF-SIMS. Applied Surface Science, 2018, 444, 187-196.	3.1	10
18	Study of TiO ₂ in anatase form on selected properties of new aliphatic-aromatic imines with bent shape towards organic electronics. Liquid Crystals, 2018, 45, 831-843.	0.9	9

#	Article	IF	CITATIONS
19	Hybrid Materials Based on I,d-Poly(lactic acid) and Single-Walled Carbon Nanotubes as Flexible Substrate for Organic Devices. Polymers, 2018, 10, 1271.	2.0	11
20	Adaptability of single melanoma cells to surfaces with distinct hydrophobicity and roughness. Applied Surface Science, 2018, 457, 881-890.	3.1	6
21	Between single ion magnets and macromolecules: a polymer/transition metal-based semi-solid solution. Chemical Science, 2018, 9, 7277-7286.	3.7	11
22	Synthesis and characterization of two new TiO ₂ -containing benzothiazole-based imine composites for organic device applications. Beilstein Journal of Nanotechnology, 2018, 9, 721-739.	1.5	13
23	Influence of Acrylic Polymers Stereoregularity on Interface Interactions in Model Thin Film Systems. Macromolecular Chemistry and Physics, 2018, 219, 1800097.	1.1	1
24	Transition between stable hydrophilization and fast etching/hydrophilization of poly(methyl)methacrylate polymer using a novel atmospheric pressure dielectric barrier discharge source. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, 041303.	0.9	17
25	Contact pin-printing of albumin-fungicide conjugate for silicon nitride-based sensors biofunctionalization: Multi-technique surface analysis for optimum immunoassay performance. Applied Surface Science, 2017, 410, 79-86.	3.1	9
26	Relative Stability of Thiolate and Selenolate SAMs on $Ag(111)$ Substrate Studied by Static SIMS. Oscillation in Stability of Consecutive Chemical Bonds. Journal of Physical Chemistry C, 2017, 121, 459-470.	1.5	13
27	Relative Thermal Stability of Thiolate- and Selenolate-Bonded Aromatic Monolayers on the Au(111) Substrate. Journal of Physical Chemistry C, 2017, 121, 28031-28042.	1.5	33
28	Indirect immunoassay on functionalized silicon surface: Molecular arrangement, composition and orientation examined step-by-step with multi-technique and multivariate analysis. Colloids and Surfaces B: Biointerfaces, 2017, 150, 437-444.	2.5	13
29	Chemical stability of polymers under argon gas cluster ion beam and x-ray irradiation. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2016, 34, .	0.6	7
30	Imaging and chemical surface analysis of biomolecular functionalization of monolithically integrated on silicon Mach-Zehnder interferometric immunosensors. Applied Surface Science, 2016, 385, 529-542.	3.1	18
31	Data on step-by-step atomic force microscopy monitoring of changes occurring in single melanoma cells undergoing ToF SIMS specialized sample preparation protocol. Data in Brief, 2016, 8, 1322-1332.	0.5	1
32	The formation of the Co 3 O 4 cobalt oxide within CoO substrate. Corrosion Science, 2016, 112, 536-541.	3.0	23
33	Multilayers of poly(styrene/α- tert -butoxy-ω-vinylbenzyl-polyglycidol) microspheres with core-shell morphology: Characterization by AFM, SIMS and XPS. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 507, 200-209.	2.3	4
34	Comparing surface properties of melanoma cells using time of flight secondary ions mass spectrometry. Analyst, The, 2016, 141, 6217-6225.	1.7	5
35	Protocol of single cells preparation for time of flight secondary ionÂmass spectrometry. Analytical Biochemistry, 2016, 511, 52-60.	1.1	19
36	Orientation and biorecognition of immunoglobulin adsorbed on spin-cast poly(3-alkylthiophenes): Impact of polymer film crystallinity. Colloids and Surfaces B: Biointerfaces, 2016, 148, 278-286.	2.5	15

#	Article	IF	CITATIONS
37	Self-organization of TiO2 nanotubes in mono-, di- and tri-ethylene glycol electrolytes. Electrochimica Acta, 2016, 204, 287-293.	2.6	15
38	Differentiation between Single Bladder Cancer Cells Using Principal Component Analysis of Time-of-Flight Secondary Ion Mass Spectrometry. Analytical Chemistry, 2015, 87, 3195-3201.	3.2	19
39	Oscillations in the Stability of Consecutive Chemical Bonds Revealed by Ionâ€Induced Desorption. Angewandte Chemie - International Edition, 2015, 54, 1336-1340.	7.2	17
40	Vertical and lateral morphology effects on solar cell performance for a thiophene–quinoxaline copolymer:PC ₇₀ 8M blend. Journal of Materials Chemistry A, 2015, 3, 6970-6979.	5 . 2	46
41	Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin–streptavidin system. Analyst, The, 2015, 140, 1127-1139.	1.7	15
42	X-ray fluorescence holography studies for a Cu3Au crystal. Nuclear Instruments & Methods in Physics Research B, 2015, 364, 136-141.	0.6	3
43	Thiolate <i>versus</i> Selenolate: Structure, Stability, and Charge Transfer Properties. ACS Nano, 2015, 9, 4508-4526.	7.3	69
44	Glass–ceramics of LAS (Li 2 O–Al 2 O 3 –SiO 2) system enhanced by ion-exchange in KNO 3 salt bath. Journal of Non-Crystalline Solids, 2015, 428, 90-97.	1.5	35
45	Odd–Even Effects in the Structure and Stability of Azobenzene-Substituted Alkanethiolates on Au(111) and Ag(111) Substrates. Journal of Physical Chemistry C, 2015, 119, 25929-25944.	1.5	27
46	PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 41, 13-22.	1.5	62
47	Effects of Polythiophene Surface Structure on Adsorption and Conformation of Bovine Serum Albumin: A Multivariate and Multitechnique Study. Langmuir, 2014, 30, 13925-13933.	1.6	27
48	Immobilization of oligonucleotide probes on silicon surfaces using biotin–streptavidin system examined with microscopic and spectroscopic techniques. Applied Surface Science, 2014, 290, 199-206.	3.1	9
49	Temperature-responsive peptide-mimetic coating based on poly(N-methacryloyl-l-leucine): Properties, protein adsorption and cell growth. Colloids and Surfaces B: Biointerfaces, 2014, 118, 270-279.	2.5	22
50	Composition of PbTe oxides obtained by different methods. Materials Science in Semiconductor Processing, 2014, 21, 20-25.	1.9	1
51	1-D polymeric photonic crystals as spectroscopic zero-power humidity sensors. Microelectronic Engineering, 2014, 115, 55-60.	1.1	23
52	Humidity and wetting effects in spinâ€cast blends of insulating polymers and conducting polyaniline doped with DBSA. Journal of Applied Polymer Science, 2013, 127, 2354-2361.	1.3	2
53	Pattern replication in blends of semiconducting and insulating polymers casted by horizontal dipping. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1419-1426.	2.4	5
54	Temperature and pH dual-responsive POEGMA-based coatings for protein adsorption. Journal of Colloid and Interface Science, 2013, 411, 247-256.	5.0	39

#	Article	IF	CITATIONS
55	Buried polymer/metal interfaces examined with Kelvin Probe Force Microscopy. Thin Solid Films, 2013, 531, 271-276.	0.8	11
56	Examination of polymer/metal interface modified by self-assembled monolayer by Kelvin probe force microscopy and secondary ion mass spectrometry. Electrochimica Acta, 2013, 104, 462-467.	2.6	5
57	Model immunoassay on silicon surfaces: Vertical and lateral nanostructure vs. protein coverage. Colloids and Surfaces B: Biointerfaces, 2013, 103, 253-260.	2.5	23
58	Protein adsorption and covalent bonding to silicon nitride surfaces modified with organo-silanes: Comparison using AFM, angle-resolved XPS and multivariate ToF-SIMS analysis. Colloids and Surfaces B: Biointerfaces, 2013, 110, 217-224.	2.5	42
59	Proteins grouped into a variety of regular micro-patterns by substrate-guided domains of self-assembling poly(ethylene oxide)/polystyrene blends. Soft Matter, 2012, 8, 5550.	1.2	6
60	Temperature and pH dual-responsive coatings of oligoperoxide-graft-poly(N-isopropylacrylamide): Wettability, morphology, and protein adsorption. Journal of Colloid and Interface Science, 2012, 387, 95-105.	5.0	45
61	Polymer blends spin ast into films with complementary elements for electronics and biotechnology. Journal of Applied Polymer Science, 2012, 125, 4275-4284.	1.3	16
62	Reverse contrast and substructures in protein micro-patterns on 3D polymer surfaces. Colloids and Surfaces B: Biointerfaces, 2012, 90, 144-151.	2.5	3
63	Spectroscopic and microscopic characterization of biosensor surfaces with protein/amino-organosilane/silicon structure. Colloids and Surfaces B: Biointerfaces, 2012, 90, 159-168.	2.5	40
64	Tuning the Vertical Phase Separation in Polyfluorene: Fullerene Blend Films by Polymer Functionalization. Chemistry of Materials, 2011, 23, 2295-2302.	3.2	41
65	Spectroscopic and microscopic examination of protein adsorption and blocking of non-specific binding to silicon surfaces modified with APTES and GOPS. Procedia Engineering, 2011, 25, 334-337.	1.2	16
66	Protein coverage on silicon surfaces modified with amino-organic films: A study by AFM and angle-resolved XPS. Colloids and Surfaces B: Biointerfaces, 2010, 80, 63-71.	2.5	22
67	Dendrites and pillars in spin cast blends of polyaniline or its oligomeric analogue. Synthetic Metals, 2010, 160, 2459-2466.	2.1	16
68	Device Performance of APFOâ€3/PCBM Solar Cells with Controlled Morphology. Advanced Materials, 2009, 21, 4398-4403.	11.1	52
69	Selective Protein Adsorption on Polymer Patterns Formed by Self-Organization and Soft Lithography. Biomacromolecules, 2009, 10, 2101-2109.	2.6	41
70	Ordering domains of spin cast blends of conjugated and dielectric polymers on surfaces patterned by soft- and photo-lithography. Soft Matter, 2009, 5, 234-241.	1.2	30
71	Conductivity of Thin Polymer Films Containing Polyaniline. Molecular Crystals and Liquid Crystals, 2008, 485, 796-803.	0.4	8
72	Breath Figures in Polymer and Polymer Blend Films Spin-Coated in Dry and Humid Ambience. Langmuir, 2008, 24, 3517-3524.	1.6	65

#	Article	IF	CITATIONS
73	Integral Geometry Analysis of Fluorescence Micrographs for Quantitative Relative Comparison of Protein Adsorption onto Polymer Surfaces. Langmuir, 2008, 24, 10253-10258.	1.6	24
74	Polymer vs Solvent Diagram of Film Structures Formed in Spin-Cast Poly(3-alkylthiophene) Blends. Macromolecules, 2008, 41, 4802-4810.	2.2	55
75	Pattern Formation in Thin Polymer Films Containing Conducting Polyaniline. Macromolecular Symposia, 2008, 263, 47-52.	0.4	2
76	Swelling of poly(3-alkylthiophene) films exposed to solvent vapors and humidity: Evaluation of solubility parameters. Synthetic Metals, 2007, 157, 726-732.	2.1	91
77	Pattern replication in polyaniline–polystyrene thin films. Synthetic Metals, 2007, 157, 935-939.	2.1	14
78	Compositional Mismatch between Chemical Patterns on a Substrate and Polymer Blends Yielding Spin-Cast Films with Subpattern Periodicity. Macromolecules, 2007, 40, 2120-2125.	2.2	14
79	Structure Evolution in Layers of Polymer Blend Nanoparticles. Langmuir, 2007, 23, 7235-7240.	1.6	18
80	Humidity and solvent effects in spin-coated polythiophene–polystyrene blends. Journal of Applied Polymer Science, 2007, 105, 67-79.	1.3	43
81	Pattern guided structure formation in polymer films of asymmetric blends. Surface Science, 2006, 600, 1004-1011.	0.8	11
82	Influence of solvents and substrates on the morphology and the performance of low-bandgap polyfluorene: PCBM photovoltaic devices., 2006, 6192, 339.		5
83	Monte Carlo simulations of phase separation in thin polymer blend films: scaling properties of morphological measures. Polymer, 2005, 46, 977-982.	1.8	16
84	Pattern replication examined with integral geometry approach: application to ion milling of polymer blend films. Thin Solid Films, 2005, 476, 358-365.	0.8	13
85	Multilayer formation in spin-coated thin films of low-bandgap polyfluorene:PCBM blends. Journal of Physics Condensed Matter, 2005, 17, L529-L534.	0.7	101
86	Composition Effects in Polymer Blends Spin-Cast on Patterned Substrates. Macromolecules, 2005, 38, 8486-8493.	2.2	40
87	Influence of humid atmosphere on phase separation in polyaniline–polystyrene thin films. Synthetic Metals, 2005, 155, 516-522.	2.1	22
88	Structures Formed in Spin-Cast Films of Polystyrene Blends with Poly(butyl methacrylate) Isomers. Macromolecules, 2004, 37, 7308-7315.	2.2	38
89	Lamellar structures formed in spin-cast blends of insulating and conducting polymers. Synthetic Metals, 2004, 144, 253-257.	2.1	28
90	Evolution of 3D structures in a phase-separating polymer blend film confined by symmetric flat walls. European Physical Journal E, 2003, 12, 211-214.	0.7	6

#	Article	IF	CITATIONS
91	Surface Patterns in Solvent-Cast Polymer Blend Films Analyzed with an Integral-Geometry Approach. Macromolecules, 2003, 36, 2419-2427.	2.2	59
92	Substrate-Determined Shape of Free Surface Profiles in Spin-Cast Polymer Blend Films. Macromolecules, 2003, 36, 4060-4067.	2.2	64
93	Substructure formation during pattern transposition from substrate into polymer blend film. Europhysics Letters, 2003, 62, 855-861.	0.7	25
94	Surface-directed phase separation in nanometer polymer films: self-stratification and pattern replication. E-Polymers, 2002, 2, .	1.3	1
95	Hydrodynamic-flow-driven phase evolution in a polymer blend film modified by diblock copolymers. European Physical Journal E, 2001, 5, 207-219.	0.7	16
96	Phase decomposition in polymer blend films cast on homogeneous substrates modified by self-assembled monolayers. Vacuum, 2001, 63, 297-305.	1.6	21
97	Phase decomposition in polymer blend films cast on substrates patterned with self-assembled monolayers. Vacuum, 2001, 63, 307-313.	1.6	47
98	Three-Dimensional Information on the Phase Domain Structure of Thin Films of Polymer Blends Revealed by Secondary Ion Mass Spectrometry. Macromolecular Rapid Communications, 2001, 22, 829-834.	2.0	42
99	Wetting transition in polyolefin blends studied by profiling techniques. Macromolecular Symposia, 2000, 149, 277-282.	0.4	2
100	Wetting transition in a binary polymer blend. Europhysics Letters, 2000, 50, 35-40.	0.7	21
101	Surface segregation in the minority component of the binary polymer mixture. Vacuum, 1999, 54, 273-277.	1.6	5
102	Depth profiling studies of the surface directed phase decomposition in thin polymer films. Vacuum, 1999, 54, 303-307.	1.6	17
103	Effect of deuterium substitution on the surface interactions in binary polymer mixtures. Journal of Polymer Science, Part B: Polymer Physics, 1998, 36, 2691-2702.	2.4	5
104	Surface enrichment-depletion duality in a binary polymer blend. Europhysics Letters, 1998, 43, 404-409.	0.7	8
105	Surface-directed spinodal decomposition modified by a surface active copolymer. Europhysics Letters, 1997, 40, 503-508.	0.7	14