

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978903/publications.pdf Version: 2024-02-01

FDWIN

#	Article	IF	CITATIONS
1	Dynamically corrected gates from geometric space curves. Quantum Science and Technology, 2022, 7, 023001.	2.6	11
2	Preparing exact eigenstates of the open XXZ chain on a quantum computer. Journal of Physics A: Mathematical and Theoretical, 2022, 55, 055301.	0.7	9
3	Photonic resource state generation from a minimal number of quantum emitters. Npj Quantum Information, 2022, 8, .	2.8	9
4	Geometrical Formalism for Dynamically Corrected Gates in Multiqubit Systems. PRX Quantum, 2021, 2, .	3.5	20
5	Qubit-ADAPT-VQE: An Adaptive Algorithm for Constructing Hardware-Efficient AnsÃæe on a Quantum Processor. PRX Quantum, 2021, 2, .	3.5	180
6	Floquet-enhanced spin swaps. Nature Communications, 2021, 12, 2142.	5.8	15
7	Driven dynamics of a quantum dot electron spin coupled to a bath of higher-spin nuclei. Physical Review B, 2021, 103, .	1.1	2
8	Protecting quantum information in quantum dot spin chains by driving exchange interactions periodically. Physical Review B, 2021, 103, .	1.1	10
9	Doubly Geometric Quantum Control. PRX Quantum, 2021, 2, .	3.5	20
10	Preserving Symmetries for Variational Quantum Eigensolvers in the Presence of Noise. Physical Review Applied, 2021, 16, .	1.5	16
11	Designing arbitrary single-axis rotations robust against perpendicular time-dependent noise. New Journal of Physics, 2021, 23, 093032.	1.2	4
12	Robust photon-mediated entangling gates between quantum dot spin qubits. Physical Review B, 2021, 104, .	1.1	4
13	Preparing Bethe Ansatz Eigenstates on a Quantum Computer. PRX Quantum, 2021, 2, .	3.5	17
14	Error-correcting entanglement swapping using a practical logical photon encoding. Physical Review A, 2021, 104, .	1.0	9
15	Is the Trotterized UCCSD Ansatz Chemically Well-Defined?. Journal of Chemical Theory and Computation, 2020, 16, 1-6.	2.3	96
16	Interplay of exchange and superexchange in triple quantum dots. Physical Review B, 2020, 102, .	1.1	10
17	Fast noise-resistant control of donor nuclear spin qubits in silicon. Physical Review B, 2020, 101, .	1.1	5
18	Coherent Multispin Exchange Coupling in a Quantum-Dot Spin Chain. Physical Review X, 2020, 10, .	2.8	21

Edwin

#	Article	IF	CITATIONS
19	Efficient symmetry-preserving state preparation circuits for the variational quantum eigensolver algorithm. Npj Quantum Information, 2020, 6, .	2.8	145
20	Landau poles in condensed matter systems. Physical Review Research, 2020, 2, .	1.3	3
21	Fast high-fidelity entangling gates for spin qubits in Si double quantum dots. Physical Review B, 2019, 100, .	1.1	22
22	An adaptive variational algorithm for exact molecular simulations on a quantum computer. Nature Communications, 2019, 10, 3007.	5.8	461
23	Toward Long-Range Entanglement between Electrically Driven Single-Molecule Magnets. Journal of Physical Chemistry Letters, 2019, 10, 7347-7355.	2.1	21
24	Stabilization and manipulation of multispin states in quantum-dot time crystals with Heisenberg interactions. Physical Review B, 2019, 99, .	1.1	15
25	Enhancement of nuclear spin coherence times by driving dynamic nuclear polarization at defect centers in solids. Physical Review B, 2019, 99, .	1.1	4
26	Geometric formalism for constructing arbitrary single-qubit dynamically corrected gates. Physical Review A, 2019, 99, .	1.0	31
27	Solvable quantum model of dynamic nuclear polarization in optically driven quantum dots. Physical Review B, 2019, 99, .	1.1	3
28	Negative exchange interactions in coupled few-electron quantum dots. Physical Review B, 2018, 97, .	1.1	15
29	Fastest pulses that implement dynamically corrected single-qubit phase gates. Physical Review A, 2018, 98, .	1.0	31
30	Topological insulator ring with magnetic impurities. Physical Review B, 2018, 98, .	1.1	9
31	Engineering and Probing Topological Properties of Dirac Semimetal Films by Asymmetric Charge Transfer. Nano Letters, 2017, 17, 963-972.	4.5	14
32	Environmental noise effects on entanglement fidelity of exchange-coupled semiconductor spin qubits. Physical Review B, 2017, 95, .	1.1	15
33	Randomized Benchmarking of Barrier versus Tilt Control of a Singlet-Triplet Qubit. Physical Review Letters, 2017, 118, 216802.	2.9	32
34	Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters. Physical Review X, 2017, 7, .	2.8	67
35	Fast pulse sequences for dynamically corrected gates in singlet-triplet qubits. Physical Review B, 2017, 96, .	1.1	16
36	Single qubit operations using microwave hyperbolic secant pulses. Physical Review A, 2017, 96, .	1.0	11

Edwin

#	Article	IF	CITATIONS
37	Fast microwave-driven three-qubit gates for cavity-coupled superconducting qubits. Physical Review B, 2017, 96, .	1.1	18
38	Notch filtering the nuclear environment of a spin qubit. Nature Nanotechnology, 2017, 12, 16-20.	15.6	80
39	Noise-induced collective quantum state preservation in spin qubit arrays. Physical Review B, 2016, 93, .	1.1	11
40	Filter function formalism beyond pure dephasing and non-Markovian noise in singlet-triplet qubits. Physical Review B, 2016, 93, .	1.1	25
41	Noise Suppression Using Symmetric Exchange Gates in Spin Qubits. Physical Review Letters, 2016, 116, 116801.	2.9	186
42	Electromagnetic Signatures of the Chiral Anomaly in Weyl Semimetals. Physical Review Letters, 2016, 117, 217204.	2.9	20
43	Analytical approach to swift nonleaky entangling gates in superconducting qubits. Physical Review B, 2015, 91, .	1.1	40
44	Improving the gate fidelity of capacitively coupled spin qubits. Npj Quantum Information, 2015, 1, .	2.8	19
45	Robust quantum control using smooth pulses and topological winding. Scientific Reports, 2015, 5, 12685.	1.6	37
46	Noise-compensating pulses for electrostatically controlled silicon spin qubits. Physical Review B, 2014, 90, .	1.1	17
47	Strong hyperfine-induced modulation of an optically driven hole spin in an InAs quantum dot. Physical Review B, 2014, 89, .	1.1	27
48	Robust quantum gates for singlet-triplet spin qubits using composite pulses. Physical Review A, 2014, 89, .	1.0	77
49	Theory of dynamic nuclear polarization and feedback in quantum dots. Physical Review B, 2014, 89, .	1.1	29
50	Effective field theory, three-loop perturbative expansion, and their experimental implications in graphene many-body effects. Physical Review B, 2014, 89, .	1.1	58
51	Why Does Graphene Behave as a Weakly Interacting System?. Physical Review Letters, 2014, 113, 105502.	2.9	62
52	Six-electron semiconductor double quantum dot qubits. Physical Review B, 2013, 88, .	1.1	24
53	Noise-Resistant Control for a Spin Qubit Array. Physical Review Letters, 2013, 110, 140502.	2.9	80
54	Composite pulses for robust universal control of singlet–triplet qubits. Nature Communications, 2012, 3, 997.	5.8	140

Edwin

#	Article	IF	CITATIONS
55	Nonperturbative Master Equation Solution of Central Spin Dephasing Dynamics. Physical Review Letters, 2012, 109, 140403.	2.9	83
56	Analytically Solvable Driven Time-Dependent Two-Level Quantum Systems. Physical Review Letters, 2012, 109, 060401.	2.9	125
57	Screening of charged impurities with multielectron singlet-triplet spin qubits in quantum dots. Physical Review B, 2011, 84, .	1.1	44
58	Master equation approach to the central spin decoherence problem: Uniform coupling model and role of projection operators. Physical Review B, 2011, 84, .	1.1	31
59	Electron-Nuclear Dynamics in a Quantum Dot under Nonunitary Electron Control. Physical Review Letters, 2011, 107, 047601.	2.9	35
60	Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits. Quantum - the Open Journal for Quantum Science, 0, 5, 397.	0.0	27
61	Noise-resistant Landau-Zener sweeps from geometrical curves. Quantum - the Open Journal for	0.0	8