## **Dennis Mcnevin**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978176/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Biofiltration as an odour abatement strategy. Biochemical Engineering Journal, 2000, 5, 231-242.                                                                                                                                      | 1.8 | 118       |
| 2  | Alternative analysis of BOD removal in subsurface flow constructed wetlands employing Monod kinetics. Water Research, 2001, 35, 1295-1303.                                                                                            | 5.3 | 88        |
| 3  | Differences in Carbon Isotope Discrimination of Three Variants of D-Ribulose-1,5-bisphosphate<br>Carboxylase/Oxygenase Reflect Differences in Their Catalytic Mechanisms. Journal of Biological<br>Chemistry, 2007, 282, 36068-36076. | 1.6 | 87        |
| 4  | Indicators of biofilm development and activity in constructed wetlands microcosms. Water Research, 2004, 38, 2865-2873.                                                                                                               | 5.3 | 85        |
| 5  | A SNaPshot of next generation sequencing for forensic SNP analysis. Forensic Science International:<br>Genetics, 2015, 14, 50-60.                                                                                                     | 1.6 | 85        |
| 6  | Strategies for dealing with piggery effluent in Australia: the sequencing batch reactor as a solution.<br>Water Science and Technology, 2000, 41, 123-126.                                                                            | 1.2 | 80        |
| 7  | Forensically relevant SNaPshot® assays for human DNA SNP analysis: a review. International Journal of Legal Medicine, 2017, 131, 21-37.                                                                                               | 1.2 | 72        |
| 8  | Systematic benchmarking of tools for CpG methylation detection from nanopore sequencing. Nature Communications, 2021, 12, 3438.                                                                                                       | 5.8 | 71        |
| 9  | MAPlex - A massively parallel sequencing ancestry analysis multiplex for Asia-Pacific populations.<br>Forensic Science International: Genetics, 2019, 42, 213-226.                                                                    | 1.6 | 63        |
| 10 | Performance of ancestry-informative SNP and microhaplotype markers. Forensic Science<br>International: Genetics, 2019, 43, 102141.                                                                                                    | 1.6 | 55        |
| 11 | Short tandem repeat (STR) genotyping of keratinised hair. Forensic Science International, 2005, 153, 237-246.                                                                                                                         | 1.3 | 54        |
| 12 | Short tandem repeat (STR) genotyping of keratinised hair Part 2. An optimised genomic DNA extraction procedure reveals donor dependence of STR profiles. Forensic Science International, 2005, 153, 247-259.                          | 1.3 | 50        |
| 13 | Forensic Autosomal Short Tandem Repeats and Their Potential Association With Phenotype. Frontiers in Genetics, 2020, 11, 884.                                                                                                         | 1.1 | 49        |
| 14 | Current and emerging tools for the recovery of genetic information from post mortem samples: New directions for disaster victim identification. Forensic Science International: Genetics, 2018, 37, 270-282.                          | 1.6 | 45        |
| 15 | Determining RuBisCO activation kinetics and other rate and equilibrium constants by simultaneous<br>multiple non-linear regression of a kinetic model. Journal of Experimental Botany, 2006, 57, 3883-3900.                           | 2.4 | 44        |
| 16 | Assessment of the Precision ID Ancestry panel. International Journal of Legal Medicine, 2018, 132, 1581-1594.                                                                                                                         | 1.2 | 44        |
| 17 | Measurement of (carbon) kinetic isotope effect by Rayleigh fractionation using membrane inlet mass spectrometry for CO2-consuming reactions. Functional Plant Biology, 2006, 33, 1115.                                                | 1.1 | 40        |
| 18 | Adsorption and biological degradation of ammonium and sulfide on peat. Water Research, 1999, 33, 1449-1459.                                                                                                                           | 5.3 | 33        |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A quantitative assessment of a reliable screening technique for the STR analysis of telogen hair roots.<br>Forensic Science International: Genetics, 2013, 7, 180-188.                                                                       | 1.6 | 32        |
| 20 | Human tissue preservation for disaster victim identification (DVI) in tropical climates. Forensic Science International: Genetics, 2012, 6, 653-657.                                                                                         | 1.6 | 28        |
| 21 | Forensic characterization of 15 autosomal STRs in four populations from Xinjiang, China, and genetic relationships with neighboring populations. Scientific Reports, 2018, 8, 4673.                                                          | 1.6 | 26        |
| 22 | Direct-to-PCR tissue preservation for DNA profiling. International Journal of Legal Medicine, 2016, 130, 607-613.                                                                                                                            | 1.2 | 25        |
| 23 | Forensic DNA phenotyping: Developing a model privacy impact assessment. Forensic Science<br>International: Genetics, 2018, 34, 222-230.                                                                                                      | 1.6 | 23        |
| 24 | Massively parallel sequencing and the emergence of forensic genomics: Defining the policy and legal<br>issues for law enforcement. Science and Justice - Journal of the Forensic Science Society, 2018, 58,<br>153-158.                      | 1.3 | 23        |
| 25 | Inter-relationship between adsorption and pH in peat biofilters in the context of a cation-exchange mechanism. Water Research, 2001, 35, 736-744.                                                                                            | 5.3 | 21        |
| 26 | Policy and regulatory implications of the new frontier of forensic genomics: direct-to-consumer genetic data and genealogy records. Current Issues in Criminal Justice, 2019, 31, 194-216.                                                   | 0.8 | 21        |
| 27 | Prediction of biogeographical ancestry from genotype: a comparison of classifiers. International<br>Journal of Legal Medicine, 2017, 131, 901-912.                                                                                           | 1.2 | 20        |
| 28 | Common Genetic Variants Influence Whorls inÂFingerprint Patterns. Journal of Investigative<br>Dermatology, 2016, 136, 859-862.                                                                                                               | 0.3 | 19        |
| 29 | Prediction of biogeographical ancestry in admixed individuals. Forensic Science International:<br>Genetics, 2018, 36, 104-111.                                                                                                               | 1.6 | 19        |
| 30 | DNA recovery from unfired and fired cartridge cases: A comparison of swabbing, tape lifting, vacuum filtration, and direct PCR. Forensic Science International, 2020, 317, 110507.                                                           | 1.3 | 17        |
| 31 | Comparison of the performance of metal oxide and conducting polymer electronic noses for<br>detection of aflatoxin using artificially contaminated maize. Sensors and Actuators B: Chemical, 2022,<br>360, 131681.                           | 4.0 | 17        |
| 32 | Reduced reaction volumes and increased Taq DNA polymerase concentration improve STR profiling<br>outcomes from a real-world low template DNA source: telogen hairs. Forensic Science, Medicine, and<br>Pathology, 2015, 11, 326-338.         | 0.6 | 16        |
| 33 | Modelling adsorption and biological degradation of nutrients on peat. Biochemical Engineering<br>Journal, 1998, 2, 217-228.                                                                                                                  | 1.8 | 15        |
| 34 | Massively parallel sequencing of customised forensically informative SNP panels on the MiSeq.<br>Electrophoresis, 2016, 37, 2832-2840.                                                                                                       | 1.3 | 15        |
| 35 | Increased Epicardial Fat Thickness in Sudden Death From Stable Coronary Artery Atherosclerosis.<br>American Journal of Forensic Medicine and Pathology, 2017, 38, 162-166.                                                                   | 0.4 | 15        |
| 36 | The QIAGEN 140-locus single-nucleotide polymorphism (SNP) panel for forensic identification using massively parallel sequencing (MPS): an evaluation and a direct-to-PCR trial. International Journal of Legal Medicine, 2019, 133, 677-688. | 1.2 | 15        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Singleplex quantitative real-time PCR for the assessment of human mitochondrial DNA quantity and quality. Forensic Science, Medicine, and Pathology, 2018, 14, 70-75.                                                       | 0.6 | 14        |
| 38 | Non-cryogenic forensic tissue preservation in the field: a review. Australian Journal of Forensic Sciences, 2013, 45, 450-460.                                                                                              | 0.7 | 13        |
| 39 | Towards an integrated performance model for subsurface flow constructed wetlands. Journal of<br>Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental<br>Engineering, 2000, 35, 1415-1429. | 0.9 | 12        |
| 40 | HRM and SNaPshot as alternative forensic SNP genotyping methods. Forensic Science, Medicine, and Pathology, 2017, 13, 293-301.                                                                                              | 0.6 | 12        |
| 41 | Dog breed affiliation with a forensically validated canine STR set. Forensic Science International:<br>Genetics, 2018, 37, 126-134.                                                                                         | 1.6 | 12        |
| 42 | Assessment of high resolution melting analysis as a potential SNP genotyping technique in forensic casework. Electrophoresis, 2014, 35, 3036-3043.                                                                          | 1.3 | 11        |
| 43 | Comparison of DNA extraction methods for identification of human remains. Australian Journal of Forensic Sciences, 2012, 44, 117-127.                                                                                       | 0.7 | 10        |
| 44 | An assessment of Bayesian and multinomial logistic regression classification systems to analyse admixed individuals. Forensic Science International: Genetics Supplement Series, 2013, 4, e63-e64.                          | 0.1 | 10        |
| 45 | Genetic analysis of 12 X-STRs for forensic purposes in Liaoning Manchu population from China. Gene, 2019, 683, 153-158.                                                                                                     | 1.0 | 10        |
| 46 | Species identification using high resolution melting (HRM) analysis with random forest classification. Australian Journal of Forensic Sciences, 2019, 51, 57-72.                                                            | 0.7 | 10        |
| 47 | An in-field evaluation of rapid DNA instruments for disaster victim identification. International<br>Journal of Legal Medicine, 2022, 136, 493-499.                                                                         | 1.2 | 10        |
| 48 | Recovery and identification of bacterial DNA from illicit drugs. Forensic Science International, 2014, 235, 78-85.                                                                                                          | 1.3 | 9         |
| 49 | Ancestry informative markers (AIMs) for Korean and other East Asian and South East Asian populations. International Journal of Legal Medicine, 2019, 133, 1711-1719.                                                        | 1.2 | 9         |
| 50 | Touch DNA recovery from unfired and fired cartridges: Comparison of swabbing, tape lifting and soaking. Forensic Science International, 2022, 330, 111101.                                                                  | 1.3 | 9         |
| 51 | Characterization of Bacillus strains and hoax agents by protein profiling using automated<br>microfluidic capillary electrophoresis. Forensic Science, Medicine, and Pathology, 2014, 10, 380-389.                          | 0.6 | 7         |
| 52 | Preservation of and DNA Extraction from Muscle Tissue. Methods in Molecular Biology, 2016, 1420, 43-53.                                                                                                                     | 0.4 | 7         |
| 53 | Bayesian interpretation of discrete class characteristics. Forensic Science International, 2018, 292, 125-130.                                                                                                              | 1.3 | 7         |
| 54 | A law enforcement intelligence framework for use in predictive DNA phenotyping. Australian Journal of Forensic Sciences, 2019, 51, S255-S258.                                                                               | 0.7 | 7         |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | High resolution melting (HRM) of forensically informative SNPs. Forensic Science International:<br>Genetics Supplement Series, 2013, 4, e376-e377.                                                                                    | 0.1 | 6         |
| 56 | Effects of Plant Dyes, Watercolors and Acrylic Paints on the Colorfastness of Japanese Tissue Papers.<br>Journal of the American Institute for Conservation, 2016, 55, 56-70.                                                         | 0.2 | 6         |
| 57 | Predictive DNA analysis for biogeographical ancestry. Australian Journal of Forensic Sciences, 0, , 1-8.                                                                                                                              | 0.7 | 6         |
| 58 | An international consideration of a standards-based approach to forensic genetic genealogy. Forensic<br>Science International: Genetics Supplement Series, 2019, 7, 512-514.                                                          | 0.1 | 6         |
| 59 | An overview of biosecurity in Australia. Australian Journal of Forensic Sciences, 2014, 46, 383-396.                                                                                                                                  | 0.7 | 5         |
| 60 | Variation and Heritability in Hair Diameter and Curvature in an Australian Twin Sample. Twin Research and Human Genetics, 2016, 19, 351-358.                                                                                          | 0.3 | 5         |
| 61 | Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations. Forensic Science<br>International: Genetics, 2016, 20, 45-52.                                                                                     | 1.6 | 5         |
| 62 | Development of a forensic identity SNP panel for Indonesia. International Journal of Legal Medicine, 2015, 129, 681-691.                                                                                                              | 1.2 | 4         |
| 63 | Characterization of Yersinia species by protein profiling using automated microfluidic capillary electrophoresis. Forensic Science, Medicine, and Pathology, 2017, 13, 10-19.                                                         | 0.6 | 4         |
| 64 | Commentary on: Bright et al. (2018) Internal validation of STRmixâ,,¢ – a multi laboratory response to<br>PCAST, Forensic Science International: Genetics, 34: 11–24. Forensic Science International: Genetics,<br>2019, 41, e14-e17. | 1.6 | 4         |
| 65 | Crowdsourced and crowdfunded: the future of forensic DNA?. Australian Journal of Forensic<br>Sciences, 2020, 52, 235-241.                                                                                                             | 0.7 | 4         |
| 66 | Forensic inference of biogeographical ancestry from genotype: The Genetic Ancestry Lab. Wiley Interdisciplinary Reviews Forensic Science, 2020, 2, .                                                                                  | 1.2 | 4         |
| 67 | Evaluation of soaking to recover trace DNA from fired cartridge cases. Australian Journal of Forensic Sciences, 2020, , 1-11.                                                                                                         | 0.7 | 4         |
| 68 | Trace DNA recovery rates from firearms and ammunition as revealed by casework data. Australian<br>Journal of Forensic Sciences, 0, , 1-16.                                                                                            | 0.7 | 4         |
| 69 | STR genotyping of exogenous hair shaft DNA. Australian Journal of Forensic Sciences, 2007, 39, 107-122.                                                                                                                               | 0.7 | 3         |
| 70 | An in-depth population genetic analysis of forensic short tandem repeat loci in Indonesia. Forensic<br>Science International: Genetics Supplement Series, 2011, 3, e157-e158.                                                         | 0.1 | 3         |
| 71 | Toning Japanese tissue papers: An international survey of paper conservation practitioners. AICCM<br>Bulletin, 2015, 36, 116-123.                                                                                                     | 0.1 | 3         |
| 72 | Evaluation of commercial DNA extraction methods for biosecurity applications. Australian Journal of Forensic Sciences, 2016, 48, 407-420.                                                                                             | 0.7 | 3         |

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Population genetic portrait of Pakistani Lahore-Christians based on 32 STR loci. Scientific Reports, 2020, 10, 18960.                                                                                                                         | 1.6 | 3         |
| 74 | Comparison of Genome-Wide Association Scans for Quantitative and Observational Measures of Human Hair Curvature. Twin Research and Human Genetics, 2020, 23, 271-277.                                                                         | 0.3 | 3         |
| 75 | Proposed Framework for Comparison of Continuous Probabilistic Genotyping Systems amongst<br>Different Laboratories. Forensic Sciences, 2021, 1, 33-45.                                                                                        | 0.8 | 3         |
| 76 | A preliminary mitochondrial DNA SNP genotyping assay for inferring genealogy. Australian Journal of<br>Forensic Sciences, 2011, 43, 39-51.                                                                                                    | 0.7 | 2         |
| 77 | Influence of acidity on the mechanical stability of retouched Japanese tissue papers during the course of artificial ageing. AICCM Bulletin, 2017, 38, 3-14.                                                                                  | 0.1 | 2         |
| 78 | Automating direct-to-PCR for disaster victim identification. Australian Journal of Forensic Sciences, 2019, 51, S39-S43.                                                                                                                      | 0.7 | 2         |
| 79 | Bacillus species at the Canberra Airport: A comparison of real-time polymerase chain reaction and massively parallel sequencing for identification. Forensic Science International, 2019, 295, 169-178.                                       | 1.3 | 2         |
| 80 | Degradation of nuclear and mitochondrial DNA after Î <sup>3</sup> -irradiation and its effect on forensic genotyping. Forensic Science, Medicine, and Pathology, 2020, 16, 395-405.                                                           | 0.6 | 2         |
| 81 | Identification of Bacillus and Yersinia species and hoax agents by protein profiling using microfluidic capillary electrophoresis with peak detection algorithms. Australian Journal of Forensic Sciences, 2021, 53, 2-15.                    | 0.7 | 2         |
| 82 | Efficient DNA Profiling Protocols for Disaster Victim Identification. Forensic Sciences, 2021, 1, 148-170.                                                                                                                                    | 0.8 | 2         |
| 83 | Source Level Attribution: DNA Profiling from the ABAcard® HemaTrace® Kit. Forensic Sciences, 2021, 1, 116-129.                                                                                                                                | 0.8 | 2         |
| 84 | Background frequency of Bacillus species at the Canberra Airport: A 12 month study. Forensic Science<br>International, 2015, 257, 142-148.                                                                                                    | 1.3 | 1         |
| 85 | Fungal bioreceptivity of Japanese tissue papers treated with plant dyes, watercolours, and acrylic paints in paper conservation. Studies in Conservation, 2017, 62, 104-113.                                                                  | 0.6 | 1         |
| 86 | Increased epicardial fat thickness in sudden death from stable coronary artery atherosclerosis.<br>Pathology, 2017, 49, S102.                                                                                                                 | 0.3 | 1         |
| 87 | Response to: Biedermann & Hicks (2019), Commentary on "Dennis McNevin, Bayesian interpretation of<br>discrete class characteristics, Forensic Science International, 292 (2018) 125–130― Forensic Science<br>International, 2019, 298, e1-e2. | 1.3 | 1         |
| 88 | Sensitivity Analysis of Floc-Based Nutrient Removal. IFAC Postprint Volumes IPPV / International<br>Federation of Automatic Control, 1998, 31, 29-36.                                                                                         | 0.4 | 0         |
| 89 | Online Population Data Resources for Forensic SNP Analysis with Massively Parallel Sequencing: An<br>Overview of Online Population Data for Forensic Purposes. , 2021, , 241-287.                                                             |     | 0         |
| 90 | Empirical Evidence on Enhanced Mutation Rates of 19 RM-YSTRs for Differentiating Paternal Lineages.<br>Genes, 2022, 13, 946.                                                                                                                  | 1.0 | 0         |