Anna ÅÄgowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978166/publications.pdf Version: 2024-02-01

ΔΝΝΑ ΔΑΤΜΟΟΨΕΚΑ

#	Article	IF	CITATIONS
1	New Peptide Based Fluconazole Conjugates with Expanded Molecular Targets. Pharmaceutics, 2022, 14, 693.	2.0	6
2	Vasopressin and Its Analogues: From Natural Hormones to Multitasking Peptides. International Journal of Molecular Sciences, 2022, 23, 3068.	1.8	22
3	Can Immobilized Artificial Membrane Chromatography Support the Characterization of Antimicrobial Peptide Origin Derivatives?. Antibiotics, 2021, 10, 1237.	1.5	6
4	Conjugates of Ciprofloxacin and Levofloxacin with Cell-Penetrating Peptide Exhibit Antifungal Activity and Mammalian Cytotoxicity. International Journal of Molecular Sciences, 2020, 21, 4696.	1.8	31
5	Cu(II) complexes with peptides from FomA protein containing -His-Xaa-Yaa-Zaa-His and -His-His-motifs. ROS generation and DNA degradation. Journal of Inorganic Biochemistry, 2020, 212, 111250.	1.5	7
6	Truncation of Huia versabilis Bowman-Birk inhibitor increases its selectivity, matriptase-1 inhibitory activity and proteolytic stability. Biochimie, 2020, 171-172, 178-186.	1.3	5
7	Antibiotic-Based Conjugates Containing Antimicrobial HLopt2 Peptide: Design, Synthesis, Antimicrobial and Cytotoxic Activities. ACS Chemical Biology, 2019, 14, 2233-2242.	1.6	7
8	Peptide conjugates of lactoferricin analogues and antimicrobials—Design, chemical synthesis, and evaluation of antimicrobial activity and mammalian cytotoxicity. Peptides, 2019, 117, 170079.	1.2	17
9	Matriptase-2: monitoring and inhibiting its proteolytic activity. Future Medicinal Chemistry, 2018, 10, 2745-2761.	1.1	9
10	Copper(II) complexes with Fusobacterium nucleatum adhesin FadA: Coordination pattern, physicochemical properties and reactivity. Journal of Inorganic Biochemistry, 2018, 189, 69-80.	1.5	10
11	Antimicrobial Activity of Chimera Peptides Composed of Human Neutrophil Peptide 1 (HNP-1) Truncated Analogues and Bovine Lactoferrampin. Bioconjugate Chemistry, 2018, 29, 3060-3071.	1.8	7
12	Design and chemical syntheses of potent matriptaseâ€2 inhibitors based on trypsin inhibitor SFTIâ€1 isolated from sunflower seeds. Biopolymers, 2017, 108, e23031.	1.2	12
13	Spliced analogues of trypsin inhibitor SFTIâ€1 and their application for tracing proteolysis and delivery of cargos inside the cells. Biopolymers, 2017, 108, e22988.	1.2	4
14	Noncovalent inhibitors of human 20S and 26S proteasome based on trypsin inhibitor SFTIâ€1. Biopolymers, 2016, 106, 685-696.	1.2	7
15	Inhibitors of Matriptaseâ€2 Based on the Trypsin Inhibitor SFTIâ€1. ChemBioChem, 2015, 16, 1601-1607.	1.3	35
16	Investigation of Serineâ€Proteinaseâ€Catalyzed Peptide Splicing in Analogues of Sunflower Trypsin Inhibitorâ€1 (SFTIâ€1). ChemBioChem, 2015, 16, 2036-2045.	1.3	7
17	Peptide splicing in a double-sequence analogue of trypsin inhibitor SFTI-1 substituted in the P1positions by peptoid monomers. Biopolymers, 2015, 104, 206-212.	1.2	1
18	Convenient preparation of deuteriumâ€labeled analogs of peptides containing <i>N</i> â€substituted glycines for a stable isotope dilution LCâ€MS quantitative analysis. Journal of Peptide Science, 2015, 21, 819-825.	0.8	6

Anna ÅÄ™gowska

#	Article	IF	CITATIONS
19	Inhibition of Human and Yeast 20S Proteasome by Analogues of Trypsin Inhibitor SFTI-1. PLoS ONE, 2014, 9, e89465.	1.1	14
20	Fluorescent analogs of trypsin inhibitor SFTIâ€1 isolated from sunflower seeds—synthesis and applications. Biopolymers, 2014, 102, 124-135.	1.2	9
21	Peptidic Inhibitors of Serine Proteinases of Plant Origin. , 2013, , 187-204.		0
22	Investigation of peptide splicing using twoâ€peptideâ€chain analogs of trypsin inhibitor <scp>SFTI</scp> â€1. FEBS Journal, 2013, 280, 6213-6222.	2.2	2
23	Three Wavelength Substrate System of Neutrophil Serine Proteinases. Analytical Chemistry, 2012, 84, 7241-7248.	3.2	24
24	Inhibitory and antimicrobial activities of OGTI and HV-BBI peptides, fragments and analogs derived from amphibian skin. Peptides, 2012, 35, 276-284.	1.2	18
25	Sunflower Trypsin Inhibitor 1 as a Molecular Scaffold for Drug Discovery. Current Pharmaceutical Design, 2011, 17, 4308-4317.	0.9	51
26	Introduction of Pro and Its Analogues in the Conserved P1 Position of Trypsin Inhibitor SFTI-1 Retains Its Inhibitory Activity. Protein and Peptide Letters, 2011, 18, 1158-1167.	0.4	4
27	Implication of the disulfide bridge in trypsin inhibitor SFTI-1 in its interaction with serine proteinases. Bioorganic and Medicinal Chemistry, 2010, 18, 8188-8193.	1.4	22
28	Selection of peptomeric inhibitors of bovine α-chymotrypsin and cathepsin G based on trypsin inhibitor SFTI-1 using a combinatorial chemistry approach. Molecular Diversity, 2010, 14, 51-58.	2.1	16
29	The new fluorogenic substrates of neutrophil proteinase 3 optimized in prime site region. Analytical Biochemistry, 2010, 399, 196-201.	1.1	15
30	Inhibitory activity of doubleâ€sequence analogues of trypsin inhibitor SFTIâ€1 from sunflower seeds: an example of peptide splicing. FEBS Journal, 2010, 277, 2351-2359.	2.2	10
31	Highly Specific Substrates of Proteinase 3 Containing 3-(2-Benzoxazol-5-yl)- <scp>I</scp> -alanine and Their Application for Detection of This Enzyme in Human Serum. Analytical Chemistry, 2010, 82, 3883-3889.	3.2	7
32	Introduction of non-natural amino acid residues into the substrate-specific P1 position of trypsin inhibitor SFTI-1 yields potent chymotrypsin and cathepsin G inhibitors. Bioorganic and Medicinal Chemistry, 2009, 17, 3302-3307.	1.4	40
33	Application of specific cell permeable cathepsin G inhibitors resulted in reduced antigen processing in primary dendritic cells. Molecular Immunology, 2009, 46, 2994-2999.	1.0	24
34	Conformational studies of [Abu ^{3, 11}]‧FTIâ€1, an analogue of the trypsin inhibitor isolated from sunflower seeds. Journal of Peptide Science, 2008, 14, 911-916.	0.8	3
35	The influence of substrate peptide length on human βâ€ŧryptase specificity. Journal of Peptide Science, 2008, 14, 917-923.	0.8	9
36	Peptomeric analogues of trypsin inhibitor SFTI-1 isolated from sunflower seeds. Bioorganic and Medicinal Chemistry, 2008, 16, 5644-5652.	1.4	16

Anna ÅÄ™gowska

#	Article	IF	CITATIONS
37	New potent cathepsin G phosphonate inhibitors. Bioorganic and Medicinal Chemistry, 2008, 16, 8863-8867.	1.4	21
38	Development of sensitive cathepsin G fluorogenic substrate using combinatorial chemistry methods. Analytical Biochemistry, 2008, 375, 306-312.	1.1	15
39	Design of selective substrates of proteinase 3 using combinatorial chemistry methods. Analytical Biochemistry, 2008, 378, 208-215.	1.1	35
40	Trypsin inhibitors from the garden four o'clock (Mirabilis jalapa) and spinach (Spinacia oleracea) seeds: Isolation, characterization and chemical synthesis. Phytochemistry, 2007, 68, 1487-1496.	1.4	22
41	Design of serine proteinase inhibitors by combinatorial chemistry using trypsin inhibitor SFTlâ€1 as a starting structure. Journal of Peptide Science, 2007, 13, 749-755.	0.8	27
42	New chromogenic substrates of human neutrophil cathepsin G containing non-natural aromatic amino acid residues in position P1 selected by combinatorial chemistry methods. Molecular Diversity, 2007, 11, 93-99.	2.1	28
43	Solution conformational study of nociceptin and its 1-13 and 1-11 fragments using circular dichroism and two-dimensional NMR in conjunction with theoretical conformational analysis. Journal of Peptide Science, 2004, 10, 678-690.	0.8	8
44	The possible role of Gly residues in the prion octarepeat region in the coordination of Cu2+ ions. Dalton Transactions, 2003, , 619-624.	1.6	20
45	Conformational solution studies of neuropeptide ? using CD and NMR spectroscopy. Journal of Peptide Science, 2002, 8, 211-226.	0.8	17
46	C-Terminal glycine is crucial for hyperalgesic activity of nociceptin/orphanin FQ-(1–6). European Journal of Pharmacology, 2001, 419, 33-37.	1.7	4