
José R MartÃ--Vargas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7978128/publications.pdf Version: 2024-02-01

LOSÃO P MARTÃ-VARCAS

#	Article	IF	CITATIONS
1	Residual Flexural Strength of SFRC: A Multivariate Perspective. RILEM Bookseries, 2022, , 232-243.	0.2	1
2	Prediction of modulus of elasticity of UHPC using maximum likelihood estimation method. Structures, 2022, 35, 1308-1320.	1.7	5
3	Analytical model for predicting prestress transfer bond-related parameters of 18 mm prestressing strands. Journal of Building Engineering, 2022, 56, 104709.	1.6	2
4	Effects of tension stiffening and shrinkage on the flexural behavior of reinforced UHPFRC beams. Case Studies in Construction Materials, 2021, 15, e00746.	0.8	1
5	Mixture-proportioning of economical UHPC mixtures. Journal of Building Engineering, 2020, 27, 100970.	1.6	34
6	Bond model of 15·2 mm strand with consideration of concrete creep and shrinkage. Magazine of Concrete Research, 2020, 72, 799-810.	0.9	1
7	Temperature Gradients in Bridge Concrete I-Girders under Heat Wave. Journal of Bridge Engineering, 2019, 24, .	1.4	37
8	Long-term behavior of cracked fiber reinforced concrete under service conditions. Construction and Building Materials, 2019, 196, 649-658.	3.2	11
9	Prediction of development length from free-end slip in pretensioned concrete members. Magazine of Concrete Research, 2018, 70, 714-725.	0.9	4
10	Quantification of bond performance of 18-mm prestressing steel. Construction and Building Materials, 2018, 159, 451-462.	3.2	9
11	A New Smoothing Technique for Transfer-Length Determination. ACI Structural Journal, 2018, 115, .	0.3	1
12	Discussion: Mechanical behaviour of different types of concrete under multiaxial compression. Magazine of Concrete Research, 2017, 69, 320-321.	0.9	3
13	Assessment of transmission length of prestressing strands according to fib Model Code 2010. Engineering Structures, 2017, 147, 425-433.	2.6	9
14	Discussion: Dynamic properties of large aggregate concrete under triaxial loading. Magazine of Concrete Research, 2017, 69, 317-319.	0.9	0
15	A higher-order equation for modeling strand bond in pretensioned concrete beams. Engineering Structures, 2017, 131, 345-361.	2.6	12
16	Effect of Residual Strength Parameters on FRC Flexural Creep: Multivariate Analysis. RILEM Bookseries, 2017, , 141-153.	0.2	2
17	Influence of Fibre Reinforcement on the Long-Term Behaviour of Cracked Concrete. RILEM Bookseries, 2017, , 195-209.	0.2	1
18	Influence of concrete strength on development length of prestressed concrete members. Journal of Building Engineering, 2016, 6, 173-183.	1.6	6

#	Article	IF	CITATIONS
19	Discussion of "Strain Rate Effect on Development Length of Steel Reinforcement―by Lauren Toikka, Abass Braimah, Ghani Razaqpur, and Simon Foo. Journal of Structural Engineering, 2016, 142, 07016005.	1.7	Ο
20	Creep and residual properties of cracked macro-synthetic fibre reinforced concretes. Magazine of Concrete Research, 2016, 68, 197-207.	0.9	14
21	Discussion: Capillary absorption of concrete after mechanical loading. Magazine of Concrete Research, 2016, 68, 750-751.	0.9	0
22	Discussion: Pure creep, maturity and MP-creep in concrete in terms of an exo-process. Magazine of Concrete Research, 2016, 68, 752-753.	0.9	0
23	Discussion: Torsional behaviour of prestressed concrete girder with precast box segments. Magazine of Concrete Research, 2016, 68, 859-861.	0.9	1
24	Discussion of "Dynamic Bond Stress-Slip Relationship between Basalt FRP Sheet and Concrete under Initial Static Loading―by Dejian Shen, Yong Ji, Fenfang Yin, and Jinyang Zhang. Journal of Composites for Construction, 2016, 20, 07016001.	1.7	0
25	Bond of reinforcing bars to steel fiber reinforced concrete. Construction and Building Materials, 2016, 105, 275-284.	3.2	61
26	Effect of concrete compressive strength on transfer length. Structures, 2016, 5, 131-140.	1.7	18
27	Discussion of "Shear Strength Prediction in Reinforced Concrete Deep Beams Using Nature-Inspired Metaheuristic Support Vector Regression―by Jui-Sheng Chou, Ngoc-Tri Ngo, and Anh-Duc Pham. Journal of Computing in Civil Engineering, 2016, 30, 07015001.	2.5	Ο
28	Discussion of "Experimental Study on the Fatigue Endurance of the CFRP-Concrete Interface―by Ke Li, Shuang-Yin Cao, and Xin-Ling Wang. Journal of Composites for Construction, 2016, 20, 07015006.	1.7	0
29	Measured Development Lengths of 0.7 in. (17.8 mm) Strands for Pretensioned Beams. ACI Structural Journal, 2016, 113, .	0.3	7
30	Spacing requirements of 0.7 in. (18 mm) diameter prestressing strands. PCI Journal, 2016, 61, 70-87.	0.4	11
31	Discussion: Transmission length and shear capacity in prestressed concrete hollow core slabs. Magazine of Concrete Research, 2015, 67, 798-799.	0.9	2
32	Discussion: Effect of strain rate on splitting tensile strength of geopolymer concrete. Magazine of Concrete Research, 2015, 67, 906-907.	0.9	4
33	Discussion of "Efficient Prestressed Concrete-Steel Composite Girder for Medium-Span Bridges. I: System Description and Design―by Yaohua Deng and George Morcous. Journal of Bridge Engineering, 2015, 20, 07014007.	1.4	Ο
34	Discussion of "New Method for High-Speed Railway Bridge Dynamic Deflection Measurement―by Xianlong He, Xueshan Yang, and Lizhen Zhao. Journal of Bridge Engineering, 2015, 20, .	1.4	2
35	Discussion of "Experimental Study on Bond Behavior of Deformed Bars Embedded in Concrete Subjected to Biaxial Lateral Tensile Compressive Stresses―by Xue Zhang, Zhimin Wu, Jianjun Zheng, Yu Hu, and Qingbin Li. Journal of Materials in Civil Engineering, 2015, 27, 07015005.	1.3	0
36	Discussion of "Development Length Tests of Full-Scale Prestressed Self-Consolidating Concrete Box and I-Girders―by Bassem Andrawes, Andrew Pozolo, and Zhe Chen. Journal of Bridge Engineering, 2015, 20. 07014006.	1.4	0

#	Article	IF	CITATIONS
37	Discussion of "Efficient Prestressed Concrete-Steel Composite Girder for Medium-Span Bridges. II: Finite-Element Analysis and Experimental Investigation―by Yaohua Deng and George Morcous. Journal of Bridge Engineering, 2015, 20, 07014009.	1.4	0
38	Discussion of "Prestress Loss of a New Vertical Prestressing Anchorage System on Concrete Box-Girder Webs―by Xudong Shao, Rensheng Pan, Hua Zhao, and Zixuan Shao. Journal of Bridge Engineering, 2015, 20, 07014011.	1.4	0
39	Discussion of "Spatial Embedded Slip Model for Analyzing Time-Relative Coupling Effects of Creep and Prestress on PC Bridges―by Wei-zhen Chen and Cheng Ma. Journal of Bridge Engineering, 2015, 20, 07015004.	1.4	0
40	Discussion of "Bridge Remaining Strength Prediction Integrated with Bayesian Network and In Situ Load Testing―by Yafei Ma, Lei Wang, Jianren Zhang, Yibing Xiang, and Yongming Liu. Journal of Bridge Engineering, 2015, 20, 07015001.	1.4	0
41	Discussion of "Effect of Reinforcement Ratio on Transverse Early-Age Cracking of GFRP-RC Bridge Deck Slabs―by Amir Ghatefar, Ehab El-Salakawy, and M. T. Bassuoni. Journal of Composites for Construction, 2015, 19, 07014001.	1.7	1
42	Discussion of "Sustainable Design of Reinforced Concrete Structures through CO2 Emission Optimization―by DongHun Yeo and Florian A. Potra. Journal of Structural Engineering, 2015, 141, 07015001.	1.7	0
43	Discussion of "Equivalent Unbonded Length for Modeling of Multistrand Tendons in Precast Segmental Construction―by Marc J. Veletzos and José I. Restrepo. Journal of Bridge Engineering, 2015, 20, 07014014.	1.4	Ο
44	Discussion of "Electrochemical-Mechanistic Model for Concrete Cover Cracking due to Corrosion Initiated by Chloride Diffusion―by G. Nossoni and R. S. Harichandran. Journal of Materials in Civil Engineering, 2015, 27, 07015003.	1.3	0
45	Discussion of "Instantaneous Stiffness of Cracked Reinforced Concrete Including Steel-Concrete Interface Damage and Long-Term Effects―by Arnaud Castel, Raymond Ian Gilbert, and Gianluca Ranzi. Journal of Structural Engineering, 2015, 141, 07015005.	1.7	Ο
46	Discussion of "Bond of Reinforcement in Concrete Incorporating Recycled Concrete Aggregates―by Liam J. Butler, Jeffrey S. West, and Susan L. Tighe. Journal of Structural Engineering, 2015, 141, 07014005.	1.7	0
47	Discussion of "Bond Strength of Standard and High-Modulus GFRP Bars in High-Strength Concrete―by K. M. A. Hossain, D. Ametrano, and M. Lachemi. Journal of Materials in Civil Engineering, 2015, 27, 07014006.	1.3	0
48	Discussion of "Flexural Behavior of Reinforced Concrete Beams with TRC Tension Zone Cover―by Shiping Yin, Shilang Xu, and Henglin Lv. Journal of Materials in Civil Engineering, 2015, 27, 07014008.	1.3	0
49	Discussion: Size effect on compressive behaviours of normal-strength concrete cubes made from demolished concrete blocks and fresh concrete. Magazine of Concrete Research, 2015, 67, 430-432.	0.9	5
50	Discussion of "Geometric Design Optimization for Dynamic Response Problems of Continuous Reinforced Concrete Beams―by P. Sharafi, M. N. S. Hadi, and Lip H. Teh. Journal of Computing in Civil Engineering, 2015, 29, 07014002.	2.5	0
51	Discussion of "Specimen Size Effects and Dynamic Fracture Toughness of Cement-Based Foams―by Muhammad Mamun and Vivek Bindiganavile. Journal of Materials in Civil Engineering, 2015, 27, 07014007.	1.3	1
52	Discussion of "Experimental Study on Hybrid Fiber–Reinforced Concrete Subjected to Uniaxial Compression―by Yin Chi, Lihua Xu, and Yuanyuan Zhang. Journal of Materials in Civil Engineering, 2015, 27, 07014005.	1.3	0
53	Discussion: Bond behaviour of deformed bars in self-compacting lightweight concrete subjected to lateral pressure. Magazine of Concrete Research, 2015, 67, 104-106.	0.9	3
54	Discussion: Shear behaviour of prestressed steel fibre concrete box-beams. Magazine of Concrete Research, 2015, 67, 215-216.	0.9	0

#	Article	IF	CITATIONS
55	Discussion of "lmaging-Based Rating for Corrosion States of Weathering Steel Using Wavelet Transform and PSO-SVM Techniques―by Banfu Yan, Satoshi Goto, Ayaho Miyamoto, and Hua Zhao. Journal of Computing in Civil Engineering, 2015, 29, 07014004.	2.5	1
56	Discussion of "Finite-Element Parametric Study of Bond and Splitting Stresses in Reinforced Concrete Tie Members―by Armin Ziari and M. Reza Kianoush. Journal of Structural Engineering, 2015, 141, 07015003.	1.7	1
57	Discussion of "Experimental Investigation of Pullout Behavior of Fiber-Reinforced Polymer Reinforcements in Sand―by Cheng-Cheng Zhang, Hong-Hu Zhu, Bin Shi, Fang-Dong Wu, and Jian-Hua Yin. Journal of Composites for Construction, 2015, 19, 07015004.	1.7	0
58	Discussion of "Concrete Damage Plasticity Model for Modeling FRP-to-Concrete Bond Behavior―by Y. Tao and J. F. Chen. Journal of Composites for Construction, 2015, 19, 07015002.	1.7	1
59	Discussion of "Effect of Uniaxial Strength and Fracture Parameters of Concrete on Its Biaxial Compressive Strength―by E. Chen and Christopher K.Y. Leung. Journal of Materials in Civil Engineering, 2015, 27, 07015001.	1.3	0
60	Database on the Long-Term Behaviour of FRC: A Useful Tool to Achieve Overall Conclusions. , 2015, , .		1
61	Bond Stress-Slip Model for 0.6 in. (15.2 mm) Diameter Strand. ACI Structural Journal, 2015, 112, .	0.3	20
62	Bond Strength of Standard and High-Modulus GFRP Bars in High-Strength Concrete. Journal of Materials in Civil Engineering, 2014, 26, 449-456.	1.3	35
63	Bond of Reinforcement in Concrete Applied to Concrete Quality Control: The Bottle Bond Test. Strain, 2014, 50, 57-67.	1.4	4
64	Instantaneous Stiffness of Cracked Reinforced Concrete Including Steel-Concrete Interface Damage and Long-Term Effects. Journal of Structural Engineering, 2014, 140, .	1.7	22
65	Discussion of "Effect of Testing Method and Strain Rate on Stress-Strain Behavior of Concrete―by Xudong Chen, Shengxing Wu, Jikai Zhou, Yuzhi Chen, and Aiping Qin. Journal of Materials in Civil Engineering, 2014, 26, 07014001.	1.3	2
66	Splitting of concrete cover in steel fiber reinforced concrete: Semi-empirical modeling and minimum confinement requirements. Construction and Building Materials, 2014, 66, 743-751.	3.2	26
67	Discussion of "Performance of an AASHTO Beam Bridge Prestressed with CFRP Tendons―by Nabil Grace, Elin Jensen, Vasant Matsagar, and Prasadu Penjendra. Journal of Bridge Engineering, 2014, 19, 07013001.	1.4	0
68	Analysis of bond stress distribution for prestressing strand by Standard Test for Strand Bond. Engineering Structures, 2014, 72, 152-159.	2.6	55
69	Slip distribution model along the anchorage length of prestressing strands. Engineering Structures, 2014, 59, 674-685.	2.6	25
70	Measuring specific parameters in pretensioned concrete members using a single testing technique. Measurement: Journal of the International Measurement Confederation, 2014, 49, 421-432.	2.5	13
71	Flexural creep of steel fiber reinforced concrete in the cracked state. Construction and Building Materials, 2014, 65, 321-329.	3.2	48
72	Correlation of Strand Surface Quality to Transfer Length. ACI Structural Journal, 2014, 111, .	0.3	17

JOSé R MARTÃ-VARGAS

#	Article	IF	CITATIONS
73	Size Effect on Strand Bond and Concrete Strains at Prestress Transfer. ACI Structural Journal, 2014, 111, .	0.3	7
74	Time-dependent evolution of strand transfer length in pretensioned prestressed concrete members. Mechanics of Time-Dependent Materials, 2013, 17, 501-527.	2.3	31
75	Influence of concrete composition on anchorage bond behavior of prestressing reinforcement. Construction and Building Materials, 2013, 48, 1156-1164.	3.2	27
76	Prestress losses evaluation in prestressed concrete prismatic specimens. Engineering Structures, 2013, 48, 704-715.	2.6	55
77	Strand bond performance in prestressed concrete accounting for bond slip. Engineering Structures, 2013, 51, 236-244.	2.6	41
78	A theoretical model for including the effect of monotonic shear loading in the analysis of reinforced concrete beams. Engineering Structures, 2013, 52, 257-272.	2.6	7
79	Experimental Technique for Measuring the Longâ€ŧerm Transfer Length in Prestressed Concrete. Strain, 2013, 49, 125-134.	1.4	25
80	Predicting Strand Transfer Length in Pretensioned Concrete: Eurocode versus North American Practice. Journal of Bridge Engineering, 2013, 18, 1270-1280.	1.4	28
81	Discussion: Pull-out and push-in tests of bonded steel strands. Magazine of Concrete Research, 2013, 65, 1128-1131.	0.9	6
82	Prediction of the transfer length of prestressing strands with neural networks. Computers and Concrete, 2013, 12, 187-209.	0.7	29
83	A Test Method to Characterize Flexural Creep Behaviour of Pre-cracked FRC Specimens. Experimental Mechanics, 2012, 52, 1067-1078.	1.1	35
84	Effects of concrete composition on transmission length of prestressing strands. Construction and Building Materials, 2012, 27, 350-356.	3.2	47
85	Behaviour of steel-fibre-reinforced normal-strength concrete slender columns under cyclic loading. Engineering Structures, 2012, 39, 162-175.	2.6	30
86	Bond of 13mm prestressing steel strands in pretensioned concrete members. Engineering Structures, 2012, 41, 403-412.	2.6	42
87	Analytical model for transfer length prediction of 13 mm prestressing strand. Structural Engineering and Mechanics, 2007, 26, 211-229.	1.0	32
88	Test method for determination of the transmission and anchorage lengths in prestressed reinforcement. Magazine of Concrete Research, 2006, 58, 21-29.	0.9	37
89	Transfer and Development Lengths of Concentrically Prestressed Concrete. PCI Journal, 2006, 51, 74-85.	0.4	20