
Pascal Berto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7977670/publications.pdf Version: 2024-02-01

DASCAL REDTO

#	Article	IF	CITATIONS
1	Local Surface Chemistry Dynamically Monitored by Quantitative Phase Microscopy. Small Methods, 2022, 6, e2100737.	4.6	4
2	3D nanoparticle superlocalization with a thin diffuser. Optics Letters, 2022, 47, 3079.	1.7	3
3	Reference-less complex wavefields characterization with a high-resolution wavefront sensor. Applied Physics Letters, 2021, 118, .	1.5	6
4	Infrared phase imaging using complex scattering media. , 2021, , .		0
5	Background-suppressed SRS fingerprint imaging with a fully integrated system using a single optical parametric oscillator. Optics Express, 2020, 28, 14490.	1.7	14
6	Chromato-axial memory effect through a forward-scattering slab. Optica, 2020, 7, 338.	4.8	23
7	Wavefront Shaping by Thermo-Optical Engineering. Optics and Photonics News, 2020, 31, 44.	0.4	0
8	Tunable and free-form planar optics. Nature Photonics, 2019, 13, 649-656.	15.6	66
9	Reconfigurable Temperature Control at the Microscale by Light Shaping. ACS Photonics, 2019, 6, 422-428.	3.2	11
10	Quantification of gold nanoparticle accumulation in tissue by two-photon luminescence microscopy. Nanoscale, 2019, 11, 11331-11339.	2.8	17
11	Wavefront Sensing with a Thin Diffuser: Application to super-localization. , 2019, , .		0
12	Electrically Driven Varifocal Silicon Metalens. ACS Photonics, 2018, 5, 4497-4503.	3.2	85
13	Light Driven Design of Dynamical Thermosensitive Plasmonic Superstructures: A Bottom-Up Approach Using Silver Supercrystals. ACS Nano, 2018, 12, 10833-10842.	7.3	13
14	Monitoring Cobalt-Oxide Single Particle Electrochemistry with Subdiffraction Accuracy. Analytical Chemistry, 2018, 90, 7341-7348.	3.2	33
15	Temperature Rise under Two-Photon Optogenetic Brain Stimulation. Cell Reports, 2018, 24, 1243-1253.e5.	2.9	77
16	Tutorial: Coherent Raman light matter interaction processes. APL Photonics, 2018, 3, .	3.0	63
17	Wrapping-free numerical refocusing of scalar electromagnetic fields. Applied Optics, 2018, 57, 6582.	0.9	0
18	In vivo testing of gold nanoparticles using the Caenorhabditis elegans model organism. Acta Biomaterialia, 2017, 53, 598-609.	4.1	46

PASCAL BERTO

#	Article	IF	CITATIONS
19	Optoâ€electrochemical In Situ Monitoring of the Cathodic Formation of Single Cobalt Nanoparticles. Angewandte Chemie - International Edition, 2017, 56, 10598-10601.	7.2	48
20	Optoelektrochemische Inâ€situâ€Beobachtung der kathodischen Abscheidung einzelner Cobaltnanopartikel. Angewandte Chemie, 2017, 129, 10734-10737.	1.6	5
21	Programmable single-pixel-based broadband stimulated Raman scattering. Optics Letters, 2017, 42, 1696.	1.7	37
22	Wavefront sensing with a thin diffuser. Optics Letters, 2017, 42, 5117.	1.7	58
23	Electrochemical transformation of individual nanoparticles revealed by coupling microscopy and spectroscopy. Faraday Discussions, 2016, 193, 339-352.	1.6	28
24	Electrochemistry of Single Nanodomains Revealed by Three-Dimensional Holographic Microscopy. Accounts of Chemical Research, 2016, 49, 2049-2057.	7.6	49
25	Holographic Superlocalization of Individual Silver Nanoparticle Impacts in Micro-electrochemical Cells. , 2016, , .		0
26	Molecular Orientational Order Probed by Coherent Anti-Stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS) Microscopy: A Spectral Comparative Study. Journal of Physical Chemistry B, 2015, 119, 3242-3249.	1.2	29
27	Rapidly tunable and compact coherent Raman scattering light source for molecular spectroscopy. Journal of Raman Spectroscopy, 2014, 45, 515-520.	1.2	9
28	Background-Free Stimulated Raman Spectroscopy and Microscopy. Physical Review Letters, 2014, 112, 053905.	2.9	93
29	Time-harmonic optical heating of plasmonic nanoparticles. Physical Review B, 2014, 90, .	1.1	34
30	Deterministic temperature shaping using plasmonic nanoparticle assemblies. Nanoscale, 2014, 6, 8984-8989.	2.8	39
31	Photoinduced Heating of Nanoparticle Arrays. ACS Nano, 2013, 7, 6478-6488.	7.3	351
32	Wide-field vibrational phase imaging in an extremely folded box-CARS geometry. Optics Letters, 2013, 38, 709.	1.7	16
33	Quadriwave lateral shearing interferometry as a quantification tool for microscopy. Application to dry mass determination of living cells, temperature mapping, and vibrational phase imaging. Proceedings of SPIE, 2013, , .	0.8	3
34	Quantitative absorption spectroscopy of nano-objects. Physical Review B, 2012, 86, .	1.1	26
35	Wide-Field Vibrational Phase Imaging. Physical Review Letters, 2012, 109, 093902.	2.9	17
36	Stimulated Raman scattering microscopy by spectral focussing and fiber-generated soliton as Stokes		0

pulse. , 2012, , .

PASCAL BERTO

#	Article	IF	CITATIONS
37	Polarization resolved stimulated raman scattering: probing depolarization ratios of liquids. Journal of Raman Spectroscopy, 2012, 43, 419-424.	1.2	17
38	Double-clad hollow core photonic crystal fiber for coherent Raman endoscope. Optics Express, 2011, 19, 12562.	1.7	57
39	Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Optics Letters, 2011, 36, 2387.	1.7	119