Xingmao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7977550/publications.pdf

Version: 2024-02-01

759233 580821 31 643 12 25 citations h-index g-index papers 31 31 31 987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Azeotropic Distillation-Induced Self-Assembly of Mesostructured Spherical Nanoparticles as Drug Cargos for Controlled Release of Curcumin. Pharmaceuticals, 2022, 15, 275.	3.8	1
2	Mesoporous Silica SBA-15 Supported Pt–Ga Nanoalloys as an Active and Stable Catalyst for Propane Dehydrogenation. Industrial & Engineering Chemistry Research, 2022, 61, 7799-7809.	3.7	9
3	Hydrolytic cleavage of lignin derived C-O bonds by acid/base catalysis in water. Reaction Kinetics, Mechanisms and Catalysis, 2021, 133, 371-382.	1.7	2
4	Two-dimensional mesoporous B, N co-doped carbon nanosheets decorated with TiN nanostructures for enhanced performance lithium–sulfur batteries. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	2.3	2
5	Thermal behavior of crosslinking polystyrene resin to carbon material by one-step carbonization. Journal of Porous Materials, 2020, 27, 249-261.	2.6	6
6	A Combination Therapy of pHRE-Egr1-HSV-TK/Anti-CD133McAb-131I/MFH Mediated by FePt Nanoparticles for Liver Cancer Stem Cells. Journal of Nanomaterials, 2020, 2020, 1-15.	2.7	1
7	One-Spot Facile Synthesis of Single-Crystal LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂ Cathode Materials for Li-ion Batteries. ACS Omega, 2020, 5, 30356-30362.	3.5	15
8	Mo ₂ C Promoted Pd Nanoparticles on Hierarchical Porous Carbon for Enhanced Selective Hydrogenation of Nitroarenes. Industrial & Engineering Chemistry Research, 2020, 59, 20298-20306.	3.7	9
9	Extractive Desulfurization and Denitrogenation from Fuel Oil by a Polyether-Amine-Based Solvent. Energy & Solvent, 2020, 34, 8186-8194.	5.1	17
10	Selective hydrodeoxygenation of lignin phenols to alcohols in the aqueous phase over a hierarchical Nb ₂ O ₅ -supported Ni catalyst. Green Chemistry, 2020, 22, 1662-1670.	9.0	51
11	Corrigendum to "Biological Characteristics and Carrier Functions of Pegylated Manganese Zinc Ferrite Nanoparticlesâ€. Journal of Nanomaterials, 2020, 2020, 1-1.	2.7	O
12	Red Phosphorus/Onionâ€ike Mesoporous Carbon Composite as Highâ€Performance Anode for Sodiumâ€ion Battery. ChemElectroChem, 2019, 6, 5721-5727.	3.4	13
13	Poly(ethylene glycol) Diacid-Based Deep Eutectic Solvent with Excellent Denitrogenation Performance and Distinctive Extractive Behavior. Energy & Samp; Fuels, 2019, 33, 10380-10388.	5.1	14
14	High Catalytic Performance of Mn-Doped Ce-Zr Catalysts for Chlorobenzene Elimination. Nanomaterials, 2019, 9, 675.	4.1	13
15	Biological Characteristics and Carrier Functions of Pegylated Manganese Zinc Ferrite Nanoparticles. Journal of Nanomaterials, 2019, 2019, 1-10.	2.7	8
16	Surface Engineering of CoMoS Nanosulfide for Hydrodeoxygenation of Lignin-Derived Phenols to Arenes. ACS Catalysis, 2019, 9, 259-268.	11.2	90
17	Fabrication of 3D Porous Hierarchical NiMoS Flowerlike Architectures for Hydrodesulfurization Applications. ACS Applied Nano Materials, 2018, 1, 442-454.	5.0	29
18	Sizeâ€Controllable Synthesis of NiMoS Nanoflowers for Hydrodesulfurization – Spaceâ€Confinement Effect of Silica Nanospheres. European Journal of Inorganic Chemistry, 2018, 2018, 1988-1992.	2.0	2

#	Article	IF	CITATIONS
19	The Recent Advances of Magnetic Nanoparticles in Medicine. Journal of Nanomaterials, 2018, 2018, 1-8.	2.7	74
20	The Possible Mechanisms of HSV-TK/Hyperthermia Combined with 131I-antiAFPMcAb-GCV Nanospheres to Treat Hepatoma. Analytical Cellular Pathology, 2018, 2018, 1-15.	1.4	1
21	Tailoring the morphology of Co-doped MoS ₂ for enhanced hydrodeoxygenation performance of <i>p</i> j>-cresol. CrystEngComm, 2018, 20, 4069-4074.	2.6	15
22	Controlled Synthesis of Mesoporous Nitrogen-Doped Carbon Supported Ni-Mo Sulfides for Hydrodesulfurization of Dibenzenethiophene. Catalysis Letters, 2017, 147, 2515-2522.	2.6	12
23	Self-assembled 3D architectures of blade-shaped hierarchical hollow microspheres from cristobalite nanosheets with exposed (101) facets. CrystEngComm, 2017, 19, 4700-4703.	2.6	0
24	The Recent Advances on Liver Cancer Stem Cells: Biomarkers, Separation, and Therapy. Analytical Cellular Pathology, 2017, 2017, 1-9.	1.4	40
25	Aerosol method assisted fabrication Ag@SiO 2 and efficient catalytic activity for reduction of 4â€nitrophenol. Micro and Nano Letters, 2017, 12, 684-688.	1.3	2
26	A combination hepatoma-targeted therapy based on nanotechnology: pHRE-Egr1-HSV-TK/131I-antiAFPMcAb-GCV/MFH. Scientific Reports, 2016, 6, 33524.	3.3	12
27	Nanostructured Aerosol Particles: Fabrication, Pulmonary Drug Delivery, and Controlled Release. Journal of Nanomaterials, 2011, 2011, 1-2.	2.7	3
28	Photoresponsive Release from Azobenzene-Modified Single Cubic Crystal NaCl/Silica Particles. Journal of Nanomaterials, 2011, 2011, 1-6.	2.7	1
29	Aerosol fabrication of hollow mesoporous silica nanoparticles and encapsulation of l-methionine as a candidate drug cargo. Chemical Communications, 2010, 46, 3019.	4.1	66
30	Numerical Simulation of Ethanolâ^'Waterâ^'NaCl Droplet Evaporation. Industrial & Engineering Chemistry Research, 2010, 49, 5631-5643.	3.7	20
31	Aerosol-Assisted Self-Assembly of Single-Crystal Core/Nanoporous Shell Particles as Model Controlled Release Capsules. Journal of the American Chemical Society, 2006, 128, 4512-4513.	13.7	115