Åukasz Suprewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/797746/publications.pdf

Version: 2024-02-01

		1163117	1125743	
14	263	8	13	
papers	citations	h-index	g-index	
15	15	15	258	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Varied-shaped gold nanoparticles with nanogram killing efficiency as potential antimicrobial surface coatings for the medical devices. Scientific Reports, 2021, 11, 12546.	3.3	61
2	Extracellular Vimentin as a Target Against SARSâ€CoVâ€2 Host Cell Invasion. Small, 2022, 18, e2105640.	10.0	41
3	ROS-Mediated Apoptosis and Autophagy in Ovarian Cancer Cells Treated with Peanut-Shaped Gold Nanoparticles. International Journal of Nanomedicine, 2021, Volume 16, 1993-2011.	6.7	40
4	Unique Role of Vimentin Networks in Compression Stiffening of Cells and Protection of Nuclei from Compressive Stress. Nano Letters, 2022, 22, 4725-4732.	9.1	21
5	NDM-1 Carbapenemase-Producing Enterobacteriaceae are Highly Susceptible to Ceragenins CSA-13, CSA-44, and CSA-131. Infection and Drug Resistance, 2020, Volume 13, 3277-3294.	2.7	17
6	Magnetic alignment of injectable hydrogel scaffolds for spinal cord injury repair. Biomaterials Science, 2022, 10, 2237-2247.	5.4	15
7	Rod-shaped gold nanoparticles exert potent candidacidal activity and decrease the adhesion of fungal cells. Nanomedicine, 2020, 15, 2733-2752.	3.3	13
8	Bacteria Residing at Root Canals Can Induce Cell Proliferation and Alter the Mechanical Properties of Gingival and Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 7914.	4.1	12
9	Nanomechanical Hallmarks of Helicobacter pylori Infection in Pediatric Patients. International Journal of Molecular Sciences, 2021, 22, 5624.	4.1	7
10	Decreased Activity of Blood Acid Sphingomyelinase in the Course of Multiple Myeloma. International Journal of Molecular Sciences, 2019, 20, 6048.	4.1	5
11	Peanut-Shaped Gold Nanoparticles with Shells of Ceragenin CSA-131 Display the Ability to Inhibit Ovarian Cancer Growth In Vitro and in a Tumor Xenograft Model. Cancers, 2021, 13, 5424.	3.7	5
12	Targeting bacteria causing otitis media using nanosystems containing nonspherical gold nanoparticles and ceragenins. Nanomedicine, 2021, 16, 2657-2678.	3.3	4
13	Physics Comes to the Aid of Medicine—Clinically-Relevant Microorganisms through the Eyes of Atomic Force Microscope. Pathogens, 2020, 9, 969.	2.8	2
14	Sphingosine-1-Phosphate-Triggered Expression of Cathelicidin LL-37 Promotes the Growth of Human Bladder Cancer Cells. International Journal of Molecular Sciences, 2022, 23, 7443.	4.1	1