Han Lin

List of Publications by Citations

Source: https://exaly.com/author-pdf/7977327/han-lin-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6,943 68 34 74 h-index g-index citations papers 6.58 9,045 13.3 74 avg, IF L-index ext. papers ext. citations

#	Paper	IF	Citations
68	A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. <i>Journal of the American Chemical Society</i> , 2017 , 139, 16235-16247	16.4	656
67	Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. <i>Nano Letters</i> , 2017 , 17, 384-391	11.5	623
66	Discovery of a cytokine and its receptor by functional screening of the extracellular proteome. <i>Science</i> , 2008 , 320, 807-11	33.3	554
65	Nanoparticle-triggered in situ catalytic chemical reactions for tumour-specific therapy. <i>Chemical Society Reviews</i> , 2018 , 47, 1938-1958	58.5	407
64	Metalloporphyrin-Encapsulated Biodegradable Nanosystems for Highly Efficient Magnetic Resonance Imaging-Guided Sonodynamic Cancer Therapy. <i>Journal of the American Chemical Society</i> , 2017 , 139, 1275-1284	16.4	395
63	Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. <i>Science</i> , 2011 , 332, 848-52	33.3	305
62	Theranostic 2D Tantalum Carbide (MXene). Advanced Materials, 2018, 30, 1703284	24	279
61	Nanocatalytic Tumor Therapy by Biomimetic Dual Inorganic Nanozyme-Catalyzed Cascade Reaction. <i>Advanced Science</i> , 2019 , 6, 1801733	13.6	250
60	Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. <i>Advanced Science</i> , 2018 , 5, 1800518	13.6	245
59	Two-Dimensional Tantalum Carbide (MXenes) Composite Nanosheets for Multiple Imaging-Guided Photothermal Tumor Ablation. <i>ACS Nano</i> , 2017 , 11, 12696-12712	16.7	223
58	Oxygen-Deficient Black Titania for Synergistic/Enhanced Sonodynamic and Photoinduced Cancer Therapy at Near Infrared-II Biowindow. <i>ACS Nano</i> , 2018 , 12, 4545-4555	16.7	222
57	MXene/Polymer Membranes: Synthesis, Properties, and Emerging Applications. <i>Chemistry of Materials</i> , 2020 , 32, 1703-1747	9.6	197
56	Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. <i>Chemistry of Materials</i> , 2017 , 29, 8637-8652	9.6	193
55	2D Ultrathin MXene-Based Drug-Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. <i>Advanced Healthcare Materials</i> , 2018 , 7, e1701394	10.1	181
54	Molecularly organic/inorganic hybrid hollow mesoporous organosilica nanocapsules with tumor-specific biodegradability and enhanced chemotherapeutic functionality. <i>Biomaterials</i> , 2017 , 125, 23-37	15.6	145
53	Enhanced Tumor-Specific Disulfiram Chemotherapy by Cu Chelation-Initiated Nontoxicity-to-Toxicity Transition. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11531-11539	16.4	134
52	Theranostic 2D ultrathin MnO nanosheets with fast responsibility to endogenous tumor microenvironment and exogenous NIR irradiation. <i>Biomaterials</i> , 2018 , 155, 54-63	15.6	125

(2020-2018)

51	Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. <i>Advanced Materials</i> , 2018 , 30, e1706981	24	118
50	2D Superparamagnetic Tantalum Carbide Composite MXenes for Efficient Breast-Cancer Theranostics. <i>Theranostics</i> , 2018 , 8, 1648-1664	12.1	116
49	Mitochondria-Targeted Artificial "Nano-RBCs" for Amplified Synergistic Cancer Phototherapy by a Single NIR Irradiation. <i>Advanced Science</i> , 2018 , 5, 1800049	13.6	99
48	Synergistic Sonodynamic/Chemotherapeutic Suppression of Hepatocellular Carcinoma by Targeted Biodegradable Mesoporous Nanosonosensitizers. <i>Advanced Functional Materials</i> , 2018 , 28, 1800145	15.6	98
47	Therapeutic mesopore construction on 2D NbC MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow. <i>Theranostics</i> , 2018 , 8, 4491-4508	12.1	94
46	Ultrasmall mesoporous organosilica nanoparticles: Morphology modulations and redox-responsive biodegradability for tumor-specific drug delivery. <i>Biomaterials</i> , 2018 , 161, 292-305	15.6	93
45	Bioinspired Copper Single-Atom Catalysts for Tumor Parallel Catalytic Therapy. <i>Advanced Materials</i> , 2020 , 32, e2002246	24	89
44	Highly Catalytic Niobium Carbide (MXene) Promotes Hematopoietic Recovery after Radiation by Free Radical Scavenging. <i>ACS Nano</i> , 2019 , 13, 6438-6454	16.7	79
43	Silicene: Wet-Chemical Exfoliation Synthesis and Biodegradable Tumor Nanomedicine. <i>Advanced Materials</i> , 2019 , 31, e1903013	24	77
42	Hypoxia-Irrelevant Photonic Thermodynamic Cancer Nanomedicine. <i>ACS Nano</i> , 2019 , 13, 2223-2235	16.7	77
41	A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. <i>Nano Research</i> , 2018 , 11, 4149-4168	10	75
40	Inorganic Nanoshell-Stabilized Liquid Metal for Targeted Photonanomedicine in NIR-II Biowindow. <i>Nano Letters</i> , 2019 , 19, 2128-2137	11.5	65
39	2D magnetic titanium carbide MXene for cancer theranostics. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3541-3548	7.3	63
38	Niobium Carbide MXene Augmented Medical Implant Elicits Bacterial Infection Elimination and Tissue Regeneration. <i>ACS Nano</i> , 2021 , 15, 1086-1099	16.7	47
37	Triggering Sequential Catalytic Fenton Reaction on 2D MXenes for Hyperthermia-Augmented Synergistic Nanocatalytic Cancer Therapy. <i>ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Cancer Therapy. ACS Applied Materials & District Synergistic Nanocatalytic Nanocatal</i>	P·5	44
36	Two-dimensional titanium carbide MXenes as efficient non-noble metal electrocatalysts for oxygen reduction reaction. <i>Science China Materials</i> , 2019 , 62, 662-670	7.1	44
35	Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms. <i>Nanoscale Horizons</i> , 2019 , 4, 415-425	10.8	39
34	Two-dimensional silicene composite nanosheets enable exogenous/endogenous-responsive and synergistic hyperthermia-augmented catalytic tumor theranostics. <i>Biomaterials</i> , 2020 , 256, 120206	15.6	34

33	Photonic/magnetic hyperthermia-synergistic nanocatalytic cancer therapy enabled by zero-valence iron nanocatalysts. <i>Biomaterials</i> , 2019 , 219, 119374	15.6	34
32	Self-evolved hydrogen peroxide boosts photothermal-promoted tumor-specific nanocatalytic therapy. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 3599-3609	7.3	33
31	Nanomedicine-Enabled Photonic Thermogaseous Cancer Therapy. <i>Advanced Science</i> , 2020 , 7, 1901954	13.6	30
30	Hepatic tolerance to hypotension as assessed by the changes in arterial ketone body ratio in the state of brain death. <i>Transplantation</i> , 1989 , 47, 444-8	1.8	27
29	Magnesium-Engineered Silica Framework for pH-Accelerated Biodegradation and DNAzyme-Triggered Chemotherapy. <i>Small</i> , 2018 , 14, e1800708	11	26
28	A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. <i>Science Advances</i> , 2021 , 7, eabj8833	14.3	25
27	Borophene and Boron Fullerene Materials in Hydrogen Storage: Opportunities and Challenges. <i>ChemSusChem</i> , 2020 , 13, 3754	8.3	23
26	"Stepwise Extraction" strategy-based injectable bioresponsive composite implant for cancer theranostics. <i>Biomaterials</i> , 2018 , 166, 38-51	15.6	23
25	Single-Atom Catalysts for Nanocatalytic Tumor Therapy. <i>Small</i> , 2021 , 17, e2004467	11	22
24	Functional nanomaterials in peripheral nerve regeneration: Scaffold design, chemical principles and microenvironmental remodeling. <i>Materials Today</i> , 2021 , 51, 165-165	21.8	20
23	A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. <i>Nanoscale</i> , 2020 , 12, 10265-10276	7.7	19
22	Engineering two-dimensional silicene composite nanosheets for dual-sensitized and photonic hyperthermia-augmented cancer radiotherapy. <i>Biomaterials</i> , 2021 , 269, 120455	15.6	19
21	Magnetostrictive-Piezoelectric-Triggered Nanocatalytic Tumor Therapy. <i>Nano Letters</i> , 2021 , 21, 6764-67	7 72 .5	17
20	Potentiated cytosolic drug delivery and photonic hyperthermia by 2D free-standing silicene nanosheets for tumor nanomedicine. <i>Nanoscale</i> , 2020 , 12, 17931-17946	7.7	13
19	Transitional Metal-Based Noncatalytic Medicine for Tumor Therapy. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2001819	10.1	11
18	In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 5257-5266	7.3	10
17	Multifunctional Mesoporous Silica Nanoprobes: Material Chemistry B ased Fabrication and Bio-Imaging Functionality. <i>Advanced Therapeutics</i> , 2018 , 1, 1800078	4.9	10
16	Hydrogen-bonded silicene nanosheets of engineered bandgap and selective degradability for photodynamic therapy. <i>Biomaterials</i> , 2021 , 278, 121172	15.6	9

LIST OF PUBLICATIONS

15	Perioperative assessment of older surgical patients using a frailty index-feasibility and association with adverse post-operative outcomes. <i>Anaesthesia and Intensive Care</i> , 2017 , 45, 676-682	1.1	8
14	Permucosal implantation pilot study with HA-coated dental implant in dogs. <i>Biomaterials</i> , 1992 , 13, 825	-3 ₫.6	8
13	Responses of the working rat heart to carbon monoxide. <i>Physiology and Behavior</i> , 1989 , 46, 81-4	3.5	8
12	Microbiotic nanomedicine for tumor-specific chemotherapy-synergized innate/adaptive antitumor immunity. <i>Nano Today</i> , 2022 , 42, 101377	17.9	7
11	Anti-Infective Application of Graphene-Like Silicon Nanosheets via Membrane Destruction. <i>Advanced Healthcare Materials</i> , 2020 , 9, e1901375	10.1	7
10	Freestanding germanene nanosheets for rapid degradation and photothermal conversion. Materials Today Nano, 2021, 15, 100119	9.7	7
9	JTE-013 supplementation improves erectile dysfunction in rats with streptozotocin-induced type I diabetes through the inhibition of the rho-kinase pathway, fibrosis, and apoptosis. <i>Andrology</i> , 2020 , 8, 497-508	4.2	6
8	Hepatic functional difference between brain death hypotension and hypovolemic hypotension in liver donation. <i>Transplantation Proceedings</i> , 1989 , 21, 2389-91	1.1	5
7	Starvation-Sensitized and Oxygenation-Promoted Tumor Sonodynamic Therapy by a Cascade Enzymatic Approach. <i>Research</i> , 2021 , 2021, 9769867	7.8	4
6	Emerging two-dimensional silicene nanosheets for biomedical applications. <i>Materials Today Nano</i> , 2021 , 16, 100132	9.7	4
5	Determination of trace elements in bone crusts of rabbit during healing after fracture by INAA. Journal of Radioanalytical and Nuclear Chemistry, 1988, 127, 275-282	1.5	3
4	Reversible potassium-ion alloying storage in crystalline silicene. <i>Chemical Engineering Journal</i> , 2022 , 435, 134961	14.7	3
3	Engineering 2D Arsenic-Phosphorus Theranostic Nanosheets. <i>Advanced Functional Materials</i> , 2021 , 31, 2101660	15.6	3
2	Treatment and prognosis of pituitary adenomas in children. <i>Journal of Huazhong University of Science and Technology [Medical Sciences]</i> , 2006 , 26, 93-5		1
1	Local delivery and controlled release of miR-34a loaded in hydroxyapatite/mesoporous organosilica nanoparticles composite-coated implant wire to accelerate bone fracture healing <i>Biomaterials</i> , 2021 , 280, 121300	15.6	1