
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7977281/publications.pdf Version: 2024-02-01

SHICEO YODEN

#	Article	IF	CITATIONS
1	On the lack of stratospheric dynamical variability in lowâ€ŧop versions of the CMIP5 models. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2494-2505.	3.3	268
2	An update of observed stratospheric temperature trends. Journal of Geophysical Research, 2009, 114, .	3.3	260
3	Influence of the Stratospheric Quasi-Biennial Oscillation on the Madden–Julian Oscillation during Austral Summer. Journals of the Atmospheric Sciences, 2017, 74, 1105-1125.	1.7	95
4	Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Physics of Fluids, 1997, 9, 2081-2093.	4.0	87
5	A Numerical Experiment on Two-Dimensional Decaying Turbulence on a Rotating Sphere. Journals of the Atmospheric Sciences, 1993, 50, 631-644.	1.7	81
6	Bifurcation Properties of a Stratospheric Vacillation Model. Journals of the Atmospheric Sciences, 1987, 44, 1723-1733.	1.7	79
7	Wave–Mean Flow Interaction Associated with a QBO-like Oscillation Simulated in a Simplified GCM. Journals of the Atmospheric Sciences, 1998, 55, 502-526.	1.7	70
8	A Time-Lagged Ensemble Simulation on the Modulation of Precipitation over West Java in January–February 2007. Monthly Weather Review, 2012, 140, 601-616.	1.4	51
9	The influence of the quasi-biennial oscillation on the Madden–Julian oscillation. Nature Reviews Earth & Environment, 2021, 2, 477-489.	29.7	50
10	Medium-Range Forecast Skill Variation and Blocking Transition. A Case Study. Monthly Weather Review, 1992, 120, 1616-1627.	1.4	46
11	Zonal Flow Vacillation and Bimodality of Baroclinic Eddy Life Cycles in a Simple Global Circulation Model. Journals of the Atmospheric Sciences, 1997, 54, 2349-2361.	1.7	46
12	A Composite Analysis of the Stratospheric Sudden Warmings Simulated in a Perpetual January Integration of the Berlin TSM GCM. Journal of the Meteorological Society of Japan, 1999, 77, 431-445.	1.8	44
13	An Illustrative Model of Seasonal and Interannual Variations of the Stratospheric Circulation. Journals of the Atmospheric Sciences, 1990, 47, 1845-1853.	1.7	41
14	Multiple Planetary Flow Regimes in the Southern Hemisphere. Journal of the Meteorological Society of Japan, 1987, 65, 571-586.	1.8	38
15	Internal Variability of the Troposphere–Stratosphere Coupled System Simulated in a Simple Global Circulation Model. Journals of the Atmospheric Sciences, 2001, 58, 3184-3203.	1.7	36
16	Chaotic Mixing and Transport Barriers in an Idealized Stratospheric Polar Vortex. Journals of the Atmospheric Sciences, 2001, 58, 2616-2629.	1.7	35
17	Interannual Variations of the Seasonal March in the Southern Hemisphere Stratosphere for 1979–2002 and Characterization of the Unprecedented Year 2002. Journals of the Atmospheric Sciences, 2005, 62, 567-580.	1.7	34
18	Ranking CMIP5 GCMs for Model Ensemble Selection on Regional Scale: Case Study of the Indochina Region. Journal of Geophysical Research D: Atmospheres, 2018, 123, 8949-8974.	3.3	32

#	Article	IF	CITATIONS
19	On the Approximation of Local and Linear Radiative Damping in the Middle Atmosphere. Journals of the Atmospheric Sciences, 2010, 67, 2070-2085.	1.7	31
20	The Influence of the Stratosphere on the Tropical Troposphere. Journal of the Meteorological Society of Japan, 2021, 99, 803-845.	1.8	31
21	Numerical Studies on Time Variations of the Troposphere-Stratosphere Coupled System Journal of the Meteorological Society of Japan, 2002, 80, 811-830.	1.8	30
22	Lower-Stratospheric Radiative Damping and Polar-Night Jet Oscillation Events. Journals of the Atmospheric Sciences, 2013, 70, 1391-1408.	1.7	30
23	A Parameter Sweep Experiment on the Effects of the Equatorial QBO on Stratospheric Sudden Warming Events. Journals of the Atmospheric Sciences, 2003, 60, 1380-1394.	1.7	30
24	Atmospheric Predictability. Journal of the Meteorological Society of Japan, 2007, 85B, 77-102.	1.8	30
25	Bifurcation Properties of a Quasi-geostrophic, Barotropic, Low-order Model with Topography. Journal of the Meteorological Society of Japan, 1985, 63, 535-546.	1.8	29
26	Coupled chemistry climate model simulations of stratospheric temperatures and their trends for the recent past. Geophysical Research Letters, 2009, 36, .	4.0	29
27	Internal Interannual Variability of the Troposphere–Stratosphere Coupled System in a Simple Global Circulation Model. Part I: Parameter Sweep Experiment. Journals of the Atmospheric Sciences, 2002, 59, 3021-3036.	1.7	29
28	Dynamical Aspects of Stratospheric Vacillations in a Highly Truncated Model. Journals of the Atmospheric Sciences, 1987, 44, 3683-3695.	1.7	28
29	Dependence of Model-Simulated Heavy Rainfall on the Horizontal Resolution during the Jakarta Flood Event in January-February 2007. Scientific Online Letters on the Atmosphere, 2011, 7, 193-196.	1.4	28
30	An Observational History of the Direct Influence of the Stratospheric Quasi-biennial Oscillation on the Tropical and Subtropical Upper Troposphere and Lower Stratosphere. Journal of the Meteorological Society of Japan, 2021, 99, 239-267.	1.8	27
31	Excitation of Transient Waves by Localized Episodic Heating in the Tropics and Their Propagation into the Middle Atmosphere. Journal of the Meteorological Society of Japan, 1996, 74, 189-210.	1.8	25
32	Spectral anisotropy in forced two-dimensional turbulence on a rotating sphere. Physics of Fluids, 1997, 9, 3834-3842.	4.0	24
33	Behavior of Planetary Waves before and after Stratospheric Sudden Warming Events in Several Phases of the Equatorial QBO. Journals of the Atmospheric Sciences, 2006, 63, 1637-1649.	1.7	24
34	Nonlinear Interactions in a Two-layer, Quasi-geostrophic, Low-order Model with Topography. Journal of the Meteorological Society of Japan, 1983, 61, 1-18.	1.8	22
35	Multiple Stable States of Quasi-geostrophic Barotropic Flow over Sinusoidal Topography. Journal of the Meteorological Society of Japan, 1985, 63, 1031-1045.	1.8	21
36	Quasi-Periodic Variations of the Polar Vortex in the Southern Hemisphere Stratosphere Due to Wave–Wave Interaction. Journals of the Atmospheric Sciences, 2004, 61, 2510-2527.	1.7	16

#	Article	IF	CITATIONS
37	Internal Interannual Variability of the Troposphere–Stratosphere Coupled System in a Simple Global Circulation Model. Part II: Millennium Integrations. Journals of the Atmospheric Sciences, 2002, 59, 3037-3050.	1.7	15
38	Timeâ€lagged correlations associated with interannual variations of preâ€monsoon and postâ€monsoon precipitation in Myanmar and the Indochina Peninsula. International Journal of Climatology, 2020, 40, 3792-3812.	3.5	14
39	Indications of a strong dynamical coupling between the polar and tropical regions during the sudden stratospheric warming event January 2009, based on COSMIC/FORMASAT-3 satellite temperature data. Atmospheric Research, 2015, 166, 60-69.	4.1	13
40	Vertical Momentum Transports Associated with Moist Convection and Gravity Waves in a Minimal Model of QBO-like Oscillation. Journals of the Atmospheric Sciences, 2016, 73, 2935-2957.	1.7	13
41	Nonlinear Interactions in a Two-layer, Quasi-geostrophic, Low-order Model with Topography. Journal of the Meteorological Society of Japan, 1983, 61, 19-35.	1.8	12
42	A Numerical Experiment on the Breakdown of a Polar Vortex due to Forced Rossby Waves. Journal of the Meteorological Society of Japan, 1993, 71, 59-72.	1.8	11
43	Some Dynamical Properties of Non-Linear Baroclinic Waves in a Quasi-Geostrophic Model. Journal of the Meteorological Society of Japan, 1979, 57, 493-504.	1.8	10
44	Rossby Waves and Jets in Two-Dimensional Decaying Turbulence on a Rotating Sphere. Journals of the Atmospheric Sciences, 2007, 64, 4246-4269.	1.7	10
45	Gravity wave radiation from unsteady rotational flow in an <i>f</i> -plane shallow water system. Fluid Dynamics Research, 2007, 39, 731-754.	1.3	10
46	Impact of interactive chemistry of stratospheric ozone on Southern Hemisphere paleoclimate simulation. Journal of Geophysical Research D: Atmospheres, 2017, 122, 878-895.	3.3	10
47	Mitigation of Global Cooling by Stratospheric Chemistry Feedbacks in a Simulation of the Last Glacial Maximum. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9378-9390.	3.3	10
48	PSTEP: project for solar–terrestrial environment prediction. Earth, Planets and Space, 2021, 73, .	2.5	10
49	Chaotic Lagrangian Motion and Heat Transport in a Steady, Baroclinic Annulus Wave. Journal of the Meteorological Society of Japan, 1994, 72, 569-587.	1.8	9
50	Classification of simple low-order models in geophysical fluid dynamics and climate dynamics. Nonlinear Analysis: Theory, Methods & Applications, 1997, 30, 4607-4618.	1.1	9
51	Balance regimes for the stability of a jet in anf-plane shallow water system. Fluid Dynamics Research, 2007, 39, 353-377.	1.3	9
52	Contributing Factors to Spatiotemporal Variations of Outgoing Longwave Radiation (OLR) in the Tropics. Journal of Climate, 2019, 32, 4621-4640.	3.2	9
53	A Statistical Analysis on the Effects of the Equatorial QBO on the Extratropical Stratosphere and Troposphere Based on Large Samples of Daily Data. Scientific Online Letters on the Atmosphere, 2005, 1, 17-20.	1.4	9
54	Non-linear Evolution of a Barotropically Unstable Circumpolar Vortex. Journal of the Meteorological Society of Japan, 1994, 72, 63-80.	1.8	8

#	Article	IF	CITATIONS
55	Propagation of Waves Exited by Localized Episodic Heating in the Tropics and Their Effect on the Middle Atmosphere. Journal of the Meteorological Society of Japan, 1997, 75, 641-656.	1.8	8
56	Combined effects of QBO and 11â€year solar cycle on the winter hemisphere in a stratosphereâ€troposphere coupled system. Geophysical Research Letters, 2009, 36, .	4.0	8
57	Theoretical Aspects of Variability and Predictability in Weather and Climate Systems. Bulletin of the American Meteorological Society, 2014, 95, 1101-1104.	3.3	8
58	Downward Influence of QBO-Like Oscillation on Moist Convection in a Two-Dimensional Minimal Model Framework. Journals of the Atmospheric Sciences, 2017, 74, 3635-3655.	1.7	8
59	Drought projection in the Indochina Region based on the optimal ensemble subset of CMIP5 models. Climatic Change, 2020, 162, 687-705.	3.6	8
60	A Further Analysis of Internal Variability in a Perpetual January Integration of a Troposphere-Stratosphere-Mesosphere GCM. Journal of the Meteorological Society of Japan, 1996, 74, 175-188.	1.8	7
61	Distribution functions of a spurious trend in a finite length data set with natural variability: Statistical considerations and a numerical experiment with a global circulation model. Journal of Geophysical Research, 2005, 110, .	3.3	7
62	Asymmetrization Mechanism of Jet Profiles in Decaying β-Plane Turbulence. Journals of the Atmospheric Sciences, 2007, 64, 3354-3361.	1.7	7
63	A Minimal Model of QBO-Like Oscillation in a Stratosphere-Troposphere Coupled System under a Radiative-Moist Convective Quasi-Equilibrium State. Scientific Online Letters on the Atmosphere, 2014, 10, 112-116.	1.4	7
64	Numerical Methods of Estimating Bounds on the Non-linear Saturation of Barotropic Instability. Journal of the Meteorological Society of Japan, 1996, 74, 167-174.	1.8	6
65	Finite-Time Evolution of Small Perturbations Superposed on a Chaotic Solution: Experiment with an Idealized Barotropic Model. Journals of the Atmospheric Sciences, 2001, 58, 1066-1078.	1.7	6
66	Instabilities of a Baroclinic Zonal Flow in the Presence of Surface Topography. Journal of the Meteorological Society of Japan, 1983, 61, 789-804.	1.8	5
67	The effects of centrifugal force on the stability of axisymmetric viscous flow in a rotating annulus. Journal of Fluid Mechanics, 1991, 229, 471.	3.4	5
68	Non-Linear Aspects of a Barotropically Unstable Polar Vortex in a Forced-Dissipative System. Journal of the Meteorological Society of Japan, 1995, 73, 201-212.	1.8	5
69	Classification of Polar-Night Jet Oscillations and Their Relationship to Fast and Slow Variations in a Global Mechanistic Circulation Model of the Stratosphere and Troposphere. Journal of Climate, 2010, 23, 6438-6444.	3.2	5
70	Month-to-Month Predictability Variations of the Winter-Time Stratospheric Polar Vortex in an Operational One-month Ensemble Prediction System. Journal of the Meteorological Society of Japan, 2014, 92, 543-558.	1.8	5
71	Detection of Solar Cycle Signal in the Tropospheric Temperature using COSMIC Data. Current Science, 2018, 115, 2232.	0.8	5
72	A Parameter-Sweep Experiment on the Annular Variability with a Simple Global Circulation Model Journal of the Meteorological Society of Japan, 2002, 80, 1077-1088.	1.8	5

#	Article	IF	CITATIONS
73	Steady Axi-symmetric Flow due to Differential Heating in a Rotating Annulus and Its Dependence on Experimental Parameters. Journal of the Meteorological Society of Japan, 1992, 70, 1005-1017.	1.8	4
74	A Numerical Study on Regime Transitions of the Rotating Annulus Flow with a Semi-Spectral Model. Journal of the Meteorological Society of Japan, 1993, 71, 491-501.	1.8	4
75	Predictability Variation and Quasi-Stationary States in Simple Non-linear Systems. Journal of the Meteorological Society of Japan, 1997, 75, 557-568.	1.8	4
76	Interannual variability of the 4-day wave and isentropic mixing inside the polar vortex in midwinter of the Southern Hemisphere upper stratosphere. Journal of Geophysical Research, 2002, 107, ACL 23-1.	3.3	4
77	Comparing Simulated Size Distributions of Precipitation Systems at Different Model Resolution. Scientific Online Letters on the Atmosphere, 2017, 13, 130-134.	1.4	4
78	Theoretical Estimation of the Superrotation Strength in an Idealized Quasi-Axisymmetric Model of Planetary Atmospheres. Journal of the Meteorological Society of Japan, 2013, 91, 119-141.	1.8	4
79	QBO-Like Oscillation in a Three-Dimensional Minimal Model Framework of the Stratosphere–Troposphere Coupled System. Scientific Online Letters on the Atmosphere, 2019, 15, 62-67.	1.4	4
80	Modeling the Transport and Deposition of ¹⁰ Be Produced by the Strongest Solar Proton Event During the Holocene. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
81	Low-Frequency Variations and Optimal Excitation in a Simple Barotropic Model with Zonal Asymmetry. Journal of the Meteorological Society of Japan, 1998, 76, 561-580.	1.8	3
82	Comparison of stable isotope time series of stalagmite and meteorological data from West Java, Indonesia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 293, 90-97.	2.3	3
83	Regime Diagrams of Solutions in an Idealized Quasi-Axisymmetric Model for Superrotation of Planetary Atmospheres. Journal of the Meteorological Society of Japan, 2015, 93, 309-326.	1.8	3
84	Quasi-Periodic Energy Variation in a Zonal Flow-Baroclinic Wave Interaction Model. Journal of the Meteorological Society of Japan, 1981, 59, 291-302.	1.8	2
85	Numerical Experiments on the Layered Structures in the Mid-Troposphere over the Equatorial Pacific. Scientific Online Letters on the Atmosphere, 2005, 1, 69-72.	1.4	2
86	A Parameter Sweep Experiment on Quasiperiodic Variations of a Polar Vortex due to Wave–Wave Interaction in a Spherical Barotropic Model. Journals of the Atmospheric Sciences, 2007, 64, 4069-4083.	1.7	2
87	A Parameter Sweep Experiment on Topographic Effects on the Annular Variability. Journal of the Meteorological Society of Japan, 2004, 82, 879-893.	1.8	1
88	Temporal–Spatial Distribution of Thin Moist Layers in the Midtroposphere over the Tropical Eastern Pacific. Journal of Climate, 2009, 22, 5102-5114.	3.2	0
89	A New Graphical Method to Diagnose the Impacts of Model Changes on Climate Sensitivity. Journal of the Meteorological Society of Japan, 2021, 99, 437-448.	1.8	0
90	Minimal Model Studies of Stratosphere–Troposphere Two-way Dynamical Coupling in the Tropics through Organizations of Moist Convective Systems. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 209-218.	0.2	0

#	Article	IF	CITATIONS
91	Timeâ€lagged correlations of preâ€monsoon precipitation in the Indochina Peninsula confirmed in a large ensemble simulation dataset. International Journal of Climatology, 0, , .	3.5	Ο
92	Axisymmetric/non-axisymmetric structures of a tyhoon in a numerical experiment. Wind Engineers JAWE, 2005, 2005, 11-14.	0.1	0